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Abstract: With the impending deregulation of electric utility
industry, customer satisfaction with utility services will be
crucial. Utilities will need to place a greater emphasis on their
customers' preferences and desires. This would include the
recognition and inclusion of customer comfort and satisfaction
into utility demand side management programs. This paper
presents a fuzzy logic-based water heater and air conditioner
direct load controller recognizing several important customer
preferences and desires. Study results show that the proposed
controller successfully shifts the average power demand of
customer loads and thus improves utility's load factor.

I. Introduction

Population growth along with technological growth force the
utility companies to continue struggling to meet the ever
increasing need for electricity. With the majority of residents
conforming to the 8 AM-5 PM work schedule, the utility
companies experience overwhelming demand peaks associated
with a large amount of power being consumned at the same time.
Complementing this effect are periods of low demand.

Although over a period of time, the average amount of power
consumed by a community may be easily generated by a utility,
that utility still has to provide enough generation to meet its
highest power demand peak. As this trend continues, utility
companies may inevitably adopt a real-time-pricing strategy,
where customers will pay more for the electric power they use
during high demand periods and less during low demand
periods. It is in the best interest of the utility companies as well
as the consumer to try to reduce these high peak demand
periods and level out their power demand profiles as much as
possible. :

While reducing their peak demands, however, utilities will also
need to compete for new customers and keep current customers
satisfied with their performance and services. With the
upcoming utility deregulation, customer satisfaction is crucial.
Thus, in such a business environment, any attempt to reduce
the peak load of the system requires the full support of custo-

0-7803-5569-5/99/$10.00 © 1999 IEEE

1055

B.J. LaMeres, M.H. Nehrir, and V.Gerez

Electrical and Computer Engineering Department
Montana State University, Bozeman, MT 59717

mers. Any control scheme should consider an adequate
representation of  the customers’ specifications and
preferences. If a particular customer’s comfort is not kept in
mind during the implementation of a control strategy, his or
her tolerance level will decrease. Effectively, the customer’s
willingness to participate in any peak reduction plan also
decreases [1]. Not only will unsatisfied customers fail to
participate in a DLC program, they may likely choose to
purchase their power from another utility which is more
supporting of the customers’ desires and preferences in the
deregulated energy market [2].

Traditionally, one way that the objective of a peak reduction
plan has been accomplished is by controlling residential
electric water heaters and/or air conditioners. The electric
water heaters and air conditioners account for the largest
contributors to the total power consumption of a residence.
Furthermore, due to their energy storage capabilities, water
heaters and air conditioners are the ideal candidates for
customer or utility demand-side management (DSM) programs
to shift part of the utility power demand from peak periods to
off-peak periods [3-5]. Such DSM strategies could be effective
in utility peak load shaving and valley filling, and therefore
increasing the utility load factor. For this and other similar
reasons, electric water heaters and air conditioners have been
the focus of many load analysis and demand-side management
studies, i.e. [6-9]. :

Conventional electric water heater and air conditioner DSM
strategies focus on brute force on/off controls, where a group
of heaters and air conditioners are disabled during certain
periods of time using a direct load control strategy [10-13].
When these loads are energized (reconnected), they are either
on consuming a fixed amount of power or they are off [1].

This paper presents two new fuzzy logic-based demand control
strategies where the power consumed by water heaters and air
conditioners can be controlled using the information available
from various sources including customer desires and
preferences. The proposed strategies or variations of them are
ideal for deregulated energy markets.

The second section of the paper presents the air conditioners
control model along with its results. The third section discusses
the water heater control strategy with its results. Finally, the
last section of the paper gives some concluding remarks about



the control models described in the paper.
II. Fuzzy Logic-based Air Conditioner Controller

Two parameters are used to quantify the preferences of each
individual customer in controlling their air conditioner. The
first value is the ambient criterion, or a measure of the internal
building temperature that a customer prefers. In this work, the
ambient criterion is divided into two parameters: the actual
temperature and the preferred temperature of the customer.
With the available technology, it is feasible for a utility to
monitor and report the internal temperature of a building. The
monitoring could either be conducted using a separate sensor
or possibly read from the thermostat of the building. The
second parameter is the comfort criteria. This is a measure of
the range of temperatures that a customer can tolerate. This
gives the utility the possible advantage of longer off-times and
the customer the satisfaction of being comfortable during the
cycling period. By modeling these two parameters the
customer will have a direct voice in the DLC program.

The domain of the above parameters was determined to be the
temperature measure in degrees Fahrenheit. In {14] the authors
have chosen the domain to be in the kilowatt range. While it is
easy to determine the kW content of a building from the
temperature inside the building, it is not a reasonable thing to
do. In order to convert to kW from temperature, the size of the
building must be taken into consideration. This could lead to
customers with different preferred temperatures having the
same preferred ambient criterion.

Along with the above two parameters chosen to model the
customer preferences, two more are determined to accurately
model the thermal losses of a building. The two parameters
that have the most impact are the size of the building, and the
overall insulation rating of the building. In [14], the insulation
rating is related to the age of the house. This assumption might
have been valid 15-20 years ago, but it is not valid today. This
is because due to the increasing cost of new housing, many of
the older homes that are in use have been remodeled and/or
reinsulated so they would no longer fit into this assumption. In
this paper the units for the domains of the thermal loss
parameters are chosen to be square feet and average BTU loss
per square foot.

The global template for the actual temperature of a home is
shown in Fig. 1. The number of templates in each of the input
variables domain was chosen to be three. This decision was
made because it kept the rule-base relatively simple, and
provided enough templates to diversify the domains so that
accurate results were produced.

Therefore the fuzzy system will have 5 inputs: preferred
temperature, ambient temperature, building size, insulation
rating, and comfort level, and one output: time off. In order to
simplify the fuzzy logic process, the fuzzy logic model was
determined as follows: The model was divided into two, two-
input fuzzy controllers, and one three-input fuzzy controller.
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Fig. 1. Membership function: Actual temperature in a building.

The preferred temperature and the actual temperature are the
inputs to the first controller with the deviation as the output.
The size and insulation of the building are the inputs to the
second controller with the thermal losses of the building as the
output. The deviation, thermal, and the comfort rating of the
customer make up the inputs to the final controller with the
time that the air conditioner is disconnected as the output. A
block diagram of this is shown in Fig. 2.

Camfort

Fig. 2. Air Conditioners Fuzzy Control Block Diagram.

The output fuzzy templates were determined in a similar
manner as the input templates. The domains of these fuzzy
templates were determined by intuition and consulting. The
units on the domain were chosen to be minutes for the off-time,
degrees Fahrenheit for the deviation, and BTU/hour for thermal
losses. The range of deviation is chosen from the maximum
difference between the preferred and actual temperatures as if
they were crisp numbers. The thermal domain was divided into
three membership functions just as the initial inputs were. The
deviation domain (see Fig. 3) was divided into five functions.

This was done because the deviation could be small, medium
or large with the medium and large templates being negative or
positive. The positive templates take into account the situation
when the actual temperature is lower than preferred while the
negative templates model the opposite situation. The small
deviation template is for situations when both the actual and the
preferred temperatures are in the same temperature
membership function. Once the fuzzy inputs, outputs, and
membership functions were formulated, the rules that governed
their interactions had to be determined. A disjunctive set of
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Fig. 3. Membership function: Deviation between
temperatures.

rules was chosen to govern all of the fuzzy interactions. All
rules formulated were conditional rules. As an example, the

rules that were used to govern the thermal losses are shown in
Fig. 4.

Size of Building small medium large
medium high high poor
Ther. Temp. = low medium | high good
low low medium excellent
Insulation Rating

Fig. 4. Rules Governing Thermal Losses.
III. Air Conditioners Control Results

The input data for the simulation could either be crisp or fuzzy
numbers. In actual implementation, the inputs would be fuzzy
as specified by the customers. The customers would specify
their preferred temperature, and comfort level. For the size and
the insulation of the building, either the customer could specify
these or the utility could estimate them, but they too would be
fuzzy numbers. The data that were used in the simulations are
crisp numbers that are fuzzified by the authors' developed C++
code. The data was provided by a utility in the Midwest region
of the country. The insulation distributions were chosen to be
uniform.

The simulations were run for various payback amounts. Three
sets of simulations were run for target load reductions of
5,000, 7,500, and 10,000 kW. These values give target load
levels of approximately 95.5, and 93.5 and 90.5 MW. All
simulations were run for two days of DLC, using 1997 load
data provided by a utility in the Midwest region of the country.

In Fig. 5 the effects of both a brute force and the proposed
fuzzy logic based methods of load control are shown. In this
and all other simulations 15,000 air conditioning units are
being controlled using the fuzzy logic method, while 12,750
customers are being controlled using a brute force method. In
this figure both the brute force method and the fuzzy-logic
method are reducing the peaks of the load curve. But, the
overall peak load is slightly higher than the desired goal of 95.5
MW in the brute force case while, the fuzzy-logic method
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obtains the target of 95.5 MW. The average load is reduced
considerably with both the brute force method and the fuzzy
logic method.

In Fig. S the improvement in the load factor is Y2 of a percent
higher for the fuzzy-logic based method than the brute force
method. This is due to the fact that the fuzzy-logic method has
a higher load that it can shed each hour. When the number of
customers for both the fuzzy-based method and the brute force
method are equal, the brute force method has a slightly higher
load per hour that could be disconnected. A 3% improvement
in the load factor could have a significant effect on the revenue
earned by a utility. '
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Fig. 5. Resulting Air Conditioner Load Curves.

IV. Fuzzy Logic-based Electric Water Heater

Controller

Fig. 6 shows the block diagram of the proposed fuzzy
controller which has 22 rules, four inputs., and one output
signal. A sample of its fuzzy rules is given later in the paper.
The inputs of this model are as follows:

1. Demand: Average residential electric water heater power

: demand.

2.  Water_Temp: Temperature of the hot water at any given
time.

3. Comfort_Level: A minimum temperature for hot water,
set by the customer. Water temperature is not to fall
below this value. This temperature is set at 95° F in this
study.

4.  Max_Temp: Maximum water temperature allowed. This
temperature is set at 130° F in this study.

The controller takes the four crisp input values, fuzzifies them,
assigns a fuzzified control signal to control the voltage applied
to the water heater based on the assigned rules and membership
functions. The control signal is then converted to a crisp signal
through defuzzification process [15].

The decision making process is based on a set of linguistic



rules that will map each input signal to a set of membership
functions that correspond to that input. These signals are, in
turn, mapped to an output signal.

Demand (4)

/

Water_Temp (5)

Power (4)

Comfort_Level (2)

Max_Temp (2)

System Shift2: 4 inputs, 1 outputs, 22 rules

Fig. 6. Water Heaters Fuzzy Control Block Diagram

The voltage applied to the water heater at any given time is the
product of the fuzzy controller's output command, which is a
number between zero and one, and the water heater's rated
voltage. Assuming water heater's heating element is purely
resistive, its power consumption is proportional to the square
of its voltage which is now a variable. Therefore, the water
heater's power consumption becomes a variable. The fuzzy
rules and membership functions will be explained in the next
two sections.

V. Membership Functions

Gaussian (bell-shape) membership finctions were used for the
inputs, demand and temperature, and the output signal
(power). This type of membership function resulted in the
smoothest shifted water heater demand profile. On the other
hand, sharp membership functions were chosen for the input
variables, comfort level and maximum temperature because of
the sharp constraints on those variables. Water temperature
shall not drop below the comfort level and shall not exceed the
maximum temperature assigned by the customer. The range
for the membership functions were chosen based on
experience. Fig. 7 shows the shape, range, and the linguistic
terms used for the input and output variables. ’
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Fig. 7. Membership Functions for the Fuzzy Logic
Controller.

The fuzzy rules and membership functions are explained in the
next the section.

VI. Water Heater Fuzzy Rules

In the present model, the fuzzy controller is to shift the peaks
of the water heater demand profile to periods where total
demand, as seen by the utility, is low. At the same time,
constraints set by the customer, i.e. the maximum and minimum
temperatures for the hot water, should be met. Considering
these needs and constraints, a shifted water heater demand



profile was obtained using twenty-two rules, some of which are
as given below.

If (Demand is low) and (Water_Temp is cold) then (Power is high)

If (Demand is low) and (Water_Temp is |_warm) then (Power is high)
If (Demand is low) and (Water_Temp is m_warm)then (Power is avg)
If (Demand is low) and (Water_Temp is h_warm) then (Power is avg)

If (Demand is low) and (Water_Temp is hot) then (Power is low)

If (Demand is |_avg) and (Water_Temp is cold) then (Power is avg)

If (Demand is |_avg) and (Water_Temp is |_warm) then (Power is avg) .
If (Demand is high) and (Water_Temp is hot) then (Power is very-low)
If (Max_Temp is above) then (Power is very-low)

If (Comfort_Level is below) then (Power is high)

The last two rules in the above, set the boundaries for the
maximum and minimum temperatures. Note that in this study
we have assumed that the temperature cannot exceed a certain
limit. Therefore, there is a limit on the amount of power which
can be applied to the water heater in order to heat the water
during the periods where demand for electricity is low.
Otherwise, water temperature will exceed its maximum limit.
Similarly, water temperature should not fall below a minimum
value set by the customer. Therefore, it may not be possible to
reduce the power supplied to the heater all the way to zero
during periods of high demand for electricity.

VII. Water Heater Simulation Results

Fig. 8 shows a comparison of the fuzzy-controlled and
uncontrolled water heater power demand. It is clear from this
figure that under fuzzy control a large percentage of the water
heater power demand has been shifted from periods of high
demand for electricity to off-peak periods.

Fig. 9 shows the temperature profile of the hot water for a 24-
hour period when the water heater is under fuzzy control.

Water temperature falls during periods of high demand for
electricity because power supplied to the water heater is kept
low during those periods. On the other hand, power supplied
to the water heater is high during periods where demand for
electricity is low, and water temperature rises during these
periods. It is understood that cooperation and some planning
for the use of hot water is expected from the customers
participating in the proposed fuzzy logic-based DSM strategy.

Fig. 10 shows the average power demand profile of one fuzzy-
controlled and one uncontrolled water heater and the average
power demand of two uncontrolled water heaters. It is clear
from this figure that the load factor, defined by equation below,
is improved significantly for the average demand profile of one
fuzzy-controlled and one uncontrolled water heater as
compared to that for two uncontrolled water heaters. The load
factor is defined as:

Load Factor = Average Demand

Peak Demand
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VIII.  Conclusions

Simulation results show that it is possible to reduce the peaks
of average residential water heater and air conditioner power
demand profiles and shift them from periods of high demand
for electricity to low demand periods using the proposed
customer-interactive DSM strategy. As a result, the load factor
of the daily average residential power demand can be improved
resulting in an improved utility load factor. The proposed
strategy can also be beneficial to the customers participating
in such DSM programs, specially in a real-time pricing and/or
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deregulated environment. Some cooperation and planning for
use of hot water and air conditioner is necessary by the
customers participating in such DSM programs.
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