Barriers to Using Static Application Security Testing (SAST) Tools:
A Literature Review

Zachary Wadhams
Montana State University
Bozeman, Montana, USA

zacharywadhams@montana.edu

Clemente Izurieta
Montana State University
Pacific Northwest National
Laboratory
Idaho National Laboratory
Bozeman, Montana, USA

Ann Marie Reinhold
Montana State University
Pacific Northwest National
Laboratory
Bozeman, Montana, USA
reinhold@montana.edu

clemente.izurieta@montana.edu

Abstract

Developers face a challenging problem with no clear solution. Mod-
ern software breaches can wreak havoc on businesses and individu-
als alike. With code vulnerabilities being a leading cause, securing
applications must be a priority for developers. Static Application
Security Testing (SAST) has the potential to harden applications
by assisting in the identification and resolution of security vulnera-
bilities. Despite this, many development teams have not adopted
SAST tools into their environment. In this paper, we survey the
recent literature to uncover why some developers are apprehensive
towards SAST and identify what specific problems they encounter
when using it. We found a variety of usability problems developers
face when using SAST. Some are inherent of the tool and ultimately
require some level of developer investment while others are tool
shortcomings that SAST tool creators must address. Ultimately, we
argue that in order to drive widespread adoption and consistent
SAST usage, developers will need to embrace that some investment
is required. Simultaneously, developers will be more likely to in-
tegrate SAST tools into their workflows if the creators of SAST
tools simplify many aspects related to tool usage. Surmounting the
primary obstacles preventing the adoption of SAST requires full
consideration of both the technical and human factors.

CCS Concepts
« Security and privacy — Usability in security and privacy;
Software security engineering.

Keywords

Static Application Security Testing, SAST, Literature Review, De-
velopers, Barriers, Usability

ACM Reference Format:

Zachary Wadhams, Clemente Izurieta, and Ann Marie Reinhold. 2024. Barri-
ers to Using Static Application Security Testing (SAST) Tools: A Literature
Review. In 39th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW °24), October 27-November 1, 2024, Sacra-
mento, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3691621.3694947

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASEW °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1249-4/24/10

https://doi.org/10.1145/3691621.3694947

1 Introduction

Recent years have witnessed a surge in critical software security
issues, impacting millions of people and causing billions of dol-
lars in damages [1]. In July of 2024, a faulty CrowdStrike update
unintentionally crippled Windows systems globally, highlighting
the far-reaching consequences of software defects [6]. The 2020
SolarWinds attack stands as a well known example, where a code
vulnerability allowed attackers to inject malicious code into soft-
ware updates. This breach exposed sensitive data, disrupted critical
infrastructure, and is estimated to have cost $100 billion to recover,
impacting countless individuals and businesses [27]. These inci-
dents underscore the critical need for robust secure coding practices
throughout the software development lifecycle.

Fortunately, there are myriad of tools and techniques devel-
opers can take advantage of to secure their codebases. These in-
clude Dependency Scanning, Penetration Testing, Dynamic Code
Analysis and Static Application Security Testing (SAST), among
others[4, 14, 22]. Static Application Security Testing, in particular, is
unique as it can be implemented at any time in the development life-
cycle to identify and help to resolve vulnerabilities. It can achieve
this because of how it works—by scanning source code without it
needing to run or compile [31]. Such benefits have been recognized
by Ayewah et al., who showed that many overlooked vulnerabilities
were resolved after developers were alerted by warnings from SAST
tools [3].

While implementing SAST is relatively easy and has shown
benefits, some development teams still choose not to use it, opting
for limited code analysis, focusing on security-critical components
only, or relying mostly on manual code reviews [11, 16, 30]. This
study aims to identify the root causes of developer apprehension
regarding full SAST adoption. We focus on specific issues that
discourage developers from initiating or abandoning SAST use. By
understanding these challenges, we hope to shed light on areas
for improvement in SAST usability and encourage further research
directed at enhancing the developer experience.

2 Related Work

Previous surveys and studies have explored usability challenges
associated with SAST tools. For instance, Johnson et al. [11] inter-
viewed 20 software developers to understand their perspectives
on usability issues. Charoenwet et al. [5] examined SAST tools for
their effectiveness in security code reviews. In contrast, our study
aims to gain a broad understanding of the current state of SAST
usability through a comprehensive literature review.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

) Examine papers for
Devise search pertinent information
strings related to RQ's

Wadhams et al.

Find common

connections

between Synthesize
selected papers results

. ™
Llsstt(r)i; szaa's'd‘ — List of Relevant
gterms - Papers Papers

Key points Common
* of relevant; problems Results
papers with SAST Y

Source papers from

da}abases using Refine search criteria
strings and strings to narrow
down

Document said
information and key
points of papers

Figure 1: Study Method Diagram. Search strings were devised and refined. Following refinement of strings, all 240 papers from
the ACM Digital Library and all 108 papers from IEEE Xplore were examined for relevancy and either discarded or kept in
accordance with our inclusion criteria. All relevant papers were read from cover-to-cover, thoroughly examined, and the issues
developers encountered were cataloged. We then examined these issues systematically.

3 Methodology

An overview of our study methodology can be found in Figure 1
and we will reference it throughout this section. The initial phase
of our study involved choosing the databases from which to gather
papers. We chose the ACM Digital Library and IEEE Xplore due
to their extensive collections of peer-reviewed research articles
and conference proceedings in the field of software security and
development.

Next, we devised initial search strings as shown in the first step
in Figure 1. These strings provided an estimate of the number of
papers relating to our topic. Figure 2 displays these strings and the
results of searching on them. The initial strings returned thousands
of papers from each database. Consequently, we refined the strings,
as detailed in Figure 2, until we reached a manageable number of
papers. This is represented by the looping section from the clipboard
to the check mark in Figure 1.

Our final search strings returned 240 papers from the ACM Digi-
tal Library and 108 papers from IEEE Xplore. Upon further exami-
nation of the results from the ACM Digital Library, we noted that
the Brazilian Symposium of Systematic and Automated Software
Testing ! introduced 118 non-relevant papers into the 240 that were
sourced. This inflation occurred because the acronym “SAST" was
used in all publications from this conference, despite these papers
not covering SAST. Removal of these conference papers reduced
the number of ACM sources to 122 papers.

We then manually reviewed each of these 230 papers (108 from
IEEE Xplore and 122 from ACM Digital Library sans the Brazilian
Symposium of Systematic and Automated Software Testing papers)
for their relevance. For the first pass, we specifically looked for
papers that mentioned an implementation of SAST. We then realized
that many papers mention static analysis or SAST in a general sense
without any relation to the actual usage of these techniques. These
papers were discarded. After the initial review, we identified a total
of 89 relevant papers.

After identifying these papers, we analyzed them to identify
key points related to SAST and developer usage, particularly the
challenges encountered, shown at the star in Figure 1. We docu-
mented these problems and noted the number of papers in which
they occurred.

!https://dl.acm.org/conference/sast

N N)
[All: static code
analysis] OR [All:
static analysis] OR o
. " [All: static application N +)
achlbialbbey security testing] OR applied filters of past AND [[All: "barriers"]
[AI:SAST] OR [All: 5 years and only OR [All: "obstacles’]
vulnerability o OR [All: "difficulties"]
management] proceedings OR [All: "challenge"]]
o /
N N
(All: "static code
analysis") OR (All:
"static analysis") OR o o
(All: "static application > >
IEEE Xplore (securily (es(li)r?g") OR applied filters of past AND ("barriers" OR
(All: "sast") Or (All: 5 years and only "obstacles" OR
"vulnerability conference "difficulties” OR
management") proceedings "challenge™")))
_

J J
Figure 2: Search String Refinement. This figure shows our
search strings, refinement process, and the number of papers
returned at each step of the process. We denote each refined
string with “... +" to indicate that all the string everything

after the + was concatenated to the string(s) indicated in the
boxes to the left.

4 Results and Discussion

In general, the number of publications increased annually from 2019
- 2023 (Figure 3). Except for a slight drop in 2022, there is a year-
by-year increase in research on SAST implementation. This trend
suggests that research interest in the use of SAST is increasing.
Many papers shared the following pattern. First, a tool would
be selected and set up according to an organization’s environment.
These tools then require some level of attention to maintain which
increases the effort needed from developers. As a result, SAST tools
become cumbersome to use and thereby less attractive to those
developers. Some papers suggest that these developers gradually
reduced their use of the tools until they no longer served their
original purpose and became defunct. Within organizations, the

Barriers to Using Static Application Security Testing (SAST) Tools: A Literature Review

B ACM Digital Library [IEEE Xplore

2019

2020

2021

Year

2022

2023

Number of Papers

Figure 3: Temporal Publication Trends in SAST Conference
Proceedings. The ACM Digital Library is depicted in purple
and IEEE Xplore in blue. An increasing trend over time can be
seen, with the highest number of papers published in 2023.

Time Consuming -
Setup
Manual Effort to Fix -

Workflow
Disruption (Other)

Other .

0 20 40 60 80

Problem Mentioned

Number of Papers Mentioned

Figure 4: Number of papers in which SAST related problems
are mentioned. This figure shows the number of papers each
issue was found in. False positives have nearly twice as many
occurrences as the next highest complaint: poor output. Time
consuming setup and manual effort to fix have a similar
amount of instances. Workflow disruption (other) is a group-
ing of other workflow disruption issues. The final category,
other, contains less frequently mentioned issues that were
encountered.

decline in usage can be attributed to several usability challenges
(Figure 4), discussed in the following subsections.

4.1 False Positives

In the context of SAST tools, a false positive refers to a situation
where the tool incorrectly flags a piece of code as containing a
security vulnerability or issue when, in fact, there is no real vulner-
ability present. Over two-thirds of papers cited false positives as a
recurring pain point for developers (Figure 4).

These false positives can negatively impact developers in a va-
riety of ways. A primary way this can manifest is by wasting the
developer’s time [23]. When a developer has to spend hours track-
ing down a reported issue only to find that it wasn’t an issue, it

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

can have a cascading result. This wasted time can lead to a de-
creased trust in the tool, general frustration, and overall reduced
productivity [20].

The pervasiveness of false positives necessitates methods to
mitigate them. Guo et al. states that it is imperative to implement
strategies that minimize their occurrence and impact on the devel-
opment process [9]. Such strategies are an open area of research.

The most common of these strategies is manual review, which
requires a developer to investigate each reported issue to determine
its validity [2]. If an issue is found to be a false positive, its identifier
is added to an ignore list, and the SAST tool will no longer flag it.

4.2 Poor Output

Many SAST tools convey their results in a consistent format, either
XML or JSON [11]. While this is useful for compatibility, developers
are seldom interested in the sparse output and minimally formatted
text that XML or JSON provides [20]. Depending on the size of the
analysis files can contain thousands of lines and can be cumbersome
and overwhelming [26].

A potential strategy to enhance the readability of outputs would
involve constructing a parser that formats the issues. While a small
number of tools have a built-in parser, the vast majority do not [28].
Adding a parser to facilitate consistent and familiar presentation has
been shown to capture developer attention and potentially promote
more consistent tool usage [28]. This additional effort could be
regarded as addressing the next issue developers may encounter:
time-consuming setup.

4.3 Time-Consuming Setup

While some SAST tools may be relatively simple to run-—e.g., just
point them at a file structure—-others require an intensive setup
that demands hours of investment [19]. This time investment may
not be perceived as worthwhile, resulting in a lower adoption rate.
A developer might spend hours attempting to configure a tool to
run correctly within their environment, only to give up or deem
it unworthy of the effort. Thus, time-consuming setup discour-
ages uptake. We encourage the creators of these SAST to address
this issue and-to the extent possible-provide clear, comprehensive
instructions.

4.4 Manual Effort

When a developer uses a SAST tool, automatic code-fix suggestions
may be appealing and encourage continued usage of the tool [21].
In contrast, when a tool alerts a developer without providing sug-
gested fixes or a button for automatic correction, they can become
frustrated by the manual effort required. This overall lack of guid-
ance was a recurring theme relating to the manual effort required
when using SAST tools.

A potential solution for the lack of guidance is offered by Linters,
a static analysis tool that typically integrates into a developer’s
IDEs and provides real-time feedback [17]. Additionally, and as a
bonus, many Linters have the auto-fix functionality that developers
desire [10]. Thus, Linters have the potential to reduce the manual
effort required.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

4.5 Workflow Disruption

Static Application Security Testing can add time to a developer’s
workflow [20], potentially disrupting it. Disrupting a developer’s
workflow can have significant drawbacks, including decreased pro-
ductivity, increased frustration, and potential resistance to adopt-
ing security practices [20]. When developers are interrupted by
cumbersome tools, it can hinder their workflow and impede their
progress on projects [20]. Additionally, disruptions may lead to con-
text switching, where developers must shift their focus away from
coding to address security issues, resulting in loss of momentum
and increased cognitive load [8]. This can ultimately impact the
quality and timeliness of software delivery. Therefore, minimizing
disruptions to a developer’s workflow is essential for maintaining
productivity.

In order to achieve this, it is important for tools to operate swiftly,
ideally to provide timely feedback on a developer’s work without
prolonged delays. Maintaining rapid deployment speed is para-
mount in the implementation of SAST [24]. Any delay in these
deployments, no matter how brief, may lead to skepticism regard-
ing a tool’s effectiveness.

4.6 Other Problems

Various other one-off problems were mentioned in the corpus of
papers we evaluated. The first of these is the lack of customizability
of many tools [7]. This lack of customizability can manifest as a
barrier in a few ways, with one being difficulty integrating smoothly
with a development environment. With each environment being
different and custom-tailored to the organization, these tools should
strive to easily integrate with as wide of an audience as possible.
The other way a lack of customizability can show up is in the
actual running of the tool. Some may support a limited number of
languages, scale poorly, or not allow users to customize their rules.

Another mentioned issue is unvalidated metrics [29]. Ideally, the
results of a tool should be transparent and trustworthy, yet in many
SAST tools, there is no level of proof to support them. Through
the phenomena of “new version new answer”, even something as
simple as an updated tool version can give wildly different and
unexpected results [25]. Because changes based on SAST results
can have a significant impact, ensuring their accuracy would build
trust in the tool and likely increase usage.

4.7 What’s Next? Is It All Worth It?

Implementing SAST into a development environment helps secure
code bases, and fosters more security-conscious developers [3].
Moreover, SAST tools can be efficient in finding and helping re-
solve security vulnerabilities [12, 15]. SAST tools can be viewed as
investments, with the payout being a more robust and secure code
base in a shorter time period than a manual review could provide.
For instance, consider false positives. In the previously mentioned
approach, detected false positives are reported to prevent them
from appearing in future scans. With repeated implementation
over time, a balance may be attained, with improved handling of
false positives (e.g., databases containing known false positives).
User investment in this effort ameliorates this problem.

Similarly, writing a parser to convert poor tool output to a better
format can enhance a tool’s usability [28]. While there was certainly

Wadhams et al.

a significant engineering effort involved, the firsthand developer
feedback we received indicated a level of satisfaction with the tool
that they did not have before the parser was implemented.

Some barriers to SAST implementation can be overcome through
SAST creators developing auto-fix capabilities. Marcilio et al. [18]
and Odermatt et al. [21] mentioned that auto-fix capabilities im-
proved the overall usability and integration of tools into workflows
and pipelines.

These observations suggest that both developers and SAST tool
creators play independent but equally important roles in driving
SAST adoption. This paper highlights the substantial advantages for
developers who implement SAST proactively. In parallel, SAST tool
creators must be responsive to user feedback to ensure continuous
improvement in usability.

The successful implementation of SAST tools into development
workflows incorporates technological advancements and is also
heavily reliant on human factors. We know that the development
community must invest significant time and effort to understand the
tool’s capabilities, interpret results, and address identified vulnera-
bilities. To further drive SAST adoption, a deeper understanding
of the human element is needed. Further research should focus
on identifying the institutional, social, and cognitive barriers that
hinder SAST usage, such as skepticism about tool accuracy, or
resistance to change. We assert that the future of the SAST field
hinges on our ability to enumerate and address the human factors
impacting developers.

5 Threats to Validity

This study offers valuable insights that contribute to the field of
SAST and, by extension, secure software development. This section
discusses potential threats to the validity of our study. By identify-
ing these threats, our goal is to enhance the study’s reliability and
reduce the risk of bias.

Firstly, we followed a structured process for identifying rele-
vant papers (Figure 1). Developing this process was the first action
we took, therefore ensuring consistency through out each step of
the literature review. Although we opted for a structured search
strategy tailored to our research questions rather than a predefined
protocol like Kitchenham’s [13], this systematic approach ensured a
rigorous selection of relevant literature. While our stringent search
strings might have excluded some publications, we believe the re-
sulting sample of 89 papers provides a sufficient window into the
current state of the SAST field.

Finally, we opted to manually review all 89 selected papers in-
stead of using automated approaches like Natural Language Pro-
cessing (NLP). Some may claim that the lack of an automated aspect
can limit the scalability of our approach. We argue, however, that
this deliberate choice allowed us to gain a deeper understanding of
the breadth of the problems by directly engaging with the authors’
ideas. Our focus was on comprehending the range of issues, rather
than the granular details explored in each paper. The manual review
also facilitated our discussion of potential solutions. By directly
encountering the developers’ words, we were better equipped to
formulate our thoughts on addressing the challenges they faced.

Barriers to Using Static Application Security Testing (SAST) Tools: A Literature Review

6 Conclusion and Future Work

This paper delivers a unique two-fold contribution to the Software
Engineering and Cyber Human Factors communities. It dives deep
into SAST usability challenges, offering valuable insights directly
relevant to both SAST tool creators and development teams cur-
rently using or considering these tools.

Tool creators can take our results to better inform their develop-
ment of new and improved SAST tools. Specifically, our findings on
developer needs and challenges related to SAST usability can guide
the design of more user-friendly interfaces and output display, im-
proved false positive reporting mechanisms, simplified setup, and
automatic fixing features.

Development teams can also leverage our findings to gain in-
sights into potential challenges during SAST implementation. This
knowledge can inform their SAST planning process when it comes
to false positives, improving tool output and accounting for work-
flow disruption, ultimately empowering them to use these tools
more effectively.

While this study focuses solely on the breadth of how these
problems are mentioned, examining the depth at which specific
papers discuss them could be valuable future work. This could
involve investigating the depth of discussion for each problem
and potentially inferring the severity or overall impact it poses for
developers. A study of this kind could benefit from some form of
NLP to assist in identifying key details in text that signal severity.
Our review may also be expanded upon by extending the search
back another 5 or 10 years. This could potentially help to gain a
broader understanding of the uncovered issues and also identify
how their prevalence has changed over time.

Acknowledgments

This research is supported by TechLink (TechLink PIA FA8650-23-3-
9553). The ChatGPT Large Language Model was used in this paper
for spell-checking and grammatical enhancements. A full list of
our 89 final papers this review was sourced from can be found by
following this link.

References

[1] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Moham-
mad. 2021. Solar Winds Hack: In-Depth Analysis and Countermeasures. 2021
12th International Conference on Computing Communication and Networking Tech-
nologies (ICCCNT), 1-7. https://doi.org/10.1109/ICCCNT51525.2021.9579611

[2] Bushra Aloraini, Meiyappan Nagappan, Daniel M. German, Shinpei Hayashi,
and Yoshiki Higo. 2019. An empirical study of security warnings from static
application security testing tools. Journal of Systems and Software 158 (12 2019),
110427. https://doi.org/10.1016/j.jss.2019.110427

[3] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs fixit. Proceed-
ings of the 19th international symposium on Software testing and analysis, 241-252.
https://doi.org/10.1145/1831708.1831738

[4] Daniel Dalalana Bertoglio and Avelino Francisco Zorzo. 2017. Overview and
open issues on penetration test. Journal of the Brazilian Computer Society 23 (12
2017), 2. Issue 1. https://doi.org/10.1186/s13173-017-0051-1

[5] Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, and
Christoph Treude. 2024. An Empirical Study of Static Analysis Tools for Secure
Code Review. arXiv:2407.12241 [cs.SE] https://arxiv.org/abs/2407.12241

[6] CrowdStrike. 2024. Technical details: Falcon update for windows hosts: Crowd-

Strike. https://www.crowdstrike.com/blog/falcon-update-for-windows-hosts-

technical-details/

Daniele Granata, Massimiliano Rak, and Giovanni Salzillo. 2022. MetaSEnD: A

Security Enabled Development Life Cycle Meta-Model. Proceedings of the 17th

International Conference on Availability, Reliability and Security, 1-10. https:

//doi.org/10.1145/3538969.3544463
Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.

2017. Consequences of Unhappiness while Developing Software. 2017 IEEE/ACM

[7

[

8

=

—
L

[12]

[13

[14

[16

(17

(18]

[20

[21

[22]

[23

[24

[25]

™
2

[27

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

2nd International Workshop on Emotion Awareness in Software Engineering (SEmo-
tion), 42-47. https://doi.org/10.1109/SEmotion.2017.5

Zhaogiang Guo, Tingting Tan, Shiran Liu, Xutong Liu, Wei Lai, Yibiao Yang,
Yanhui Li, Lin Chen, Wei Dong, and Yuming Zhou. 2023. Mitigating False
Positive Static Analysis Warnings: Progress, Challenges, and Opportunities.
IEEE Transactions on Software Engineering 49 (12 2023), 5154-5188. Issue 12.
https://doi.org/10.1109/TSE.2023.3329667

Sarra Habchi, Xavier Blanc, and Romain Rouvoy. 2018. On adopting linters
to deal with performance concerns in Android apps. Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, 6-16.
https://doi.org/10.1145/3238147.3238197

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs? 2013
35th International Conference on Software Engineering (ICSE), 672-681. https:
//doi.org/10.1109/ICSE.2013.6606613

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: a static
analysis tool for detecting Web application vulnerabilities. 2006 IEEE Symposium
on Security and Privacy (SP’06), 6 pp.—263. https://doi.org/10.1109/SP.2006.29
Barbara Kitchenham, Stuart Charters, et al. 2007. Guidelines for performing
systematic literature reviews in software engineering version 2.3. Engineering
45, 4ve (2007), 1051.

Kathleen Lindlan, Janice Cuny, Allen D. Malony, Sameer Shende, Bernd Mohr,
Reid Rivenburgh, and Craig Rasmussen. 2000. A Tool Framework for Static and
Dynamic Analysis of Object-Oriented Software with Templates. ACM/IEEE SC
2000 Conference (SC’00), 49-49. https://doi.org/10.1109/SC.2000.10052

V Benjamin Livshits and Monica S Lam. 2005. Finding security vulnerabilities
in java applications with static analysis. Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, 18.

Tamara Lopez, Helen Sharp, Arosha Bandara, Thein Tun, Mark Levine, and
Bashar Nuseibeh. 2023. Security Responses in Software Development. ACM
Transactions on Software Engineering and Methodology 32 (7 2023), 1-29. Issue 3.
https://doi.org/10.1145/3563211

Linghui Luo, Martin Schéf, Daniel Sanchez, and Eric Bodden. 2021. IDE support
for cloud-based static analyses. Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 1178-1189. https://doi.org/10.1145/3468264.3468535
Diego Marcilio, Carlo A. Furia, Rodrigo Bonifacio, and Gustavo Pinto. 2019.
Automatically Generating Fix Suggestions in Response to Static Code Analysis
Warnings. 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), 34-44. https://doi.org/10.1109/SCAM.2019.00013
Jose Andre Morales, Thomas P. Scanlon, Aaron Volkmann, Joseph Yankel, and
Hasan Yasar. 2020. Security impacts of sub-optimal DevSecOps implementations
in a highly regulated environment. Proceedings of the 15th International Conference
on Availability, Reliability and Security, 1-8. https://doi.org/10.1145/3407023.
3409186

Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A large-scale
study of usability criteria addressed by static analysis tools. Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
532-543. https://doi.org/10.1145/3533767.3534374

Martin Odermatt, Diego Marcilio, and Carlo A. Furia. 2022. Static Analysis Warn-
ings and Automatic Fixing: A Replication for C Projects. 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), 805-816.
https://doi.org/10.1109/SANER53432.2022.00098

Eric O’'Donoghue, Ann Marie Reinhold, and Clemente Izurieta. 2024. Assessing
Security Risks of Software Supply Chains Using Software Bill of Materials. 2nd
International Workshop on Mining Software Repositories for Privacy and Security,
(SANER 2024).

Yuanyuan Pan. 2019. Interactive Application Security Testing. 2019 International
Conference on Smart Grid and Electrical Automation (ICSGEA), 558-561. https:
//doi.org/10.1109/ICSGEA.2019.00131

Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. 2021.
An Empirical Analysis of Practitioners’ Perspectives on Security Tool Integration
into DevOps. Proceedings of the 15th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 1-12. https://doi.org/
10.1145/3475716.3475776

Ann Marie Reinhold, Travis Weber, Colleen Lemak, Derek Reimanis, and
Clemente Izurieta. 2023. New Version, New Answer: Investigating Cybersecurity
Static-Analysis Tool Findings. 2023 IEEE International Conference on Cyber Secu-
rity and Resilience (CSR), 28-35. https://doi.org/10.1109/CSR57506.2023.10224930
Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, and Arnaud
Fietzke. 2019. Learning a Classifier for Prediction of Maintainability Based on
Static Analysis Tools. 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), 243-248. https://doi.org/10.1109/ICPC.2019.00043
Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. 2018. Security
During Application Development. Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, 1-12. https://doi.org/10.1145/3173574.
3173836

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

[28] Zachary Wadhams, Ann Marie Reinhold, and Clemente Izurieta. 2024. Automat-

[29

ing Static Analysis Through CI/CD Pipeline Integration. 2nd International Work-
shop on Mining Software Repositories for Privacy and Security, (SANER 2024).
Marvin Wyrich, Andreas Preikschat, Daniel Graziotin, and Stefan Wagner. 2021.
The Mind Is a Powerful Place: How Showing Code Comprehensibility Metrics
Influences Code Understanding. 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 512-523. https://doi.org/10.1109/ICSE43902.2021.
00055

Wadhams et al.

[30] Jing Xie, Heather R. Lipford, and Bill Chu. 2011. Why do programmers make
security errors? 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 161-164. https://doi.org/10.1109/VLHCC.2011.6070393

[31] Jingiu Yang, Lin Tan, John Peyton, and Kristofer A Duer. 2019. Towards Better
Utilizing Static Application Security Testing. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
51-60. https://doi.org/10.1109/ICSE-SEIP.2019.00014

