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ABSTRACT 

This paper focuses on better understanding how design processes affect design outcomes. 
Design process data were collected from journals kept as a part of mechanical engineering 
capstone design projects at Montana State University.  Student processes were characterized 
by time coding journal entries using a 3x4 matrix of process variables. The data were 
modeled using a principal components artificial neural network, and the model used in a 
virtual designed experiment to obtain estimates for design process factors that significantly 
affect client satisfaction. 

Results indicate that greater client satisfaction is achieved through: greater problem 
definition activity and idea generation at conceptual design levels, and problem definition 
and engineering analysis activities at the system design level.  Whereas, detailed level design 
work and design refinement activities associate with lower client satisfaction.  Some of these 
results support existing models of “good” design process, while others suggest modifications 
to adapt the models to novice designers. 
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INTRODUCTION 

Design has traditionally been an important part of an engineer’s training. It also plays an 
integral part in any organization with innovation as a core consideration. The past several 
decades have seen increasing emphasis being placed on design as the focus of engineering 
curricula. Large engineering companies and accreditation agencies alike have taken an 
aggressive stand as to what they need and expect from engineering graduates. Even so, 
design may still be one of the least understood fields in engineering education. 

With continued growth in design theory and methodology research, numerous models have 
been proposed to describe the engineering design process or aspects thereof.  However, few 
of these have been empirically or statistically validated and experimentally verified.  Those 
developed from empirical data tend to suffer from dissimilarity to design in practice (e.g., 
studies limited to short-term problems of limited scope in a laboratory setting) or a very 
small sample size (one or two in many cases).  Furthermore, few models explicitly consider 
student design processes relative to project outcomes.  This study attempts to further our 
understanding of design processes by gathering data from actual projects (one in which the 
participants have real stakes) in large enough sample sizes to enable statistical modeling that 
directly links design process to outcome.  

In academia, one of the principal objectives of capstone design courses is to incorporate a 
major design experience into the undergraduate curriculum. Because many students 
eventually work on design projects in industry, understanding their design processes would 
seem central to improving such courses, and more importantly the overall quality of work the 
engineers produce.  

In this study, we analyzed data collected from 14 student mechanical engineering design 
projects, relating design process variables to customer satisfaction using statistical 
techniques.  We wanted to better understand what process characteristics tend to be 
associated with good design outcomes.  Specifically, we characterized the relationship 
between 12 design process variables (resources spent on problem definition, idea generation, 
engineering analysis and design refinement activities at the concept, system or detail design 
levels) and project outcomes as measured by client satisfaction.  The key research questions 
addressed are: 

1. What process variables are significantly associated with client satisfaction?  

2. What is the magnitude of effect associated with the significant variables?  

3. Which variables significantly increase or decrease the likelihood of success of the 
design project? 

The next section provides a brief discussion of the methods presented in the design research 
literature to study and characterize design processes, and their applicability in addressing our 
research objectives. Then we describe our data collection and modeling methods, followed 
by results, discussion, and conclusions. 
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A LITERATURE REVIEW OF DESIGN PROCESS MODELS 

A design process may be defined as the series of activities that take a design problem from an 
initial specification to a finished artifact that meets all the requirements of the specification 
[23]. In general, a design process can be broken down into a sequence of fundamental 
operations called tasks. A greater understanding and insight into these tasks and other factors, 
which can be correlated to success, enables us to closely represent the design process. As a 
result, the process of design has been studied by many researchers from different 
perspectives and using different techniques. Many authors use flowchart representations that 
shows discrete tasks (or task outputs) connected by transition arcs. Individual elements 
within the models identify tasks, procedures, or results important to the completion of the 
design. The overall structure of the representation provides a qualitative definition of the 
design process. A brief review of the models and techniques used to characterize design 
processes is presented in the following paragraphs (see also [19]).  

Design research began in the 1960’s, with so-called “first-generation” models used to attempt 
to find generic optimization routines that could be applied to any type of problem [4]. In 
1969, Simon [36] suggested that satisficing might be a more appropriate approach, and over 
the next two decades, this idea appears in the “second-generation” models.  During this time, 
two streams appear to develop in design research with engineering researchers favoring 
heavily sequential design models, and architectural design researchers experimenting with 
more cyclical models. The architectural models also tended to include cognitive processes, 
while engineering models attempted to define the stages the design process.  “Third 
generation” models arrived after the 1980’s, combining these two viewpoints [4].  Cross [11], 
Dym [16], Haik [20], Pahl & Bietz [29], Pugh [30], and Ullman [44] are some examples of 
hybrid “third generation” models.  

What can be seen from the models is a trade-off between precision in task definition, and 
model stability with respect to sequence. Some of the earlier models (e.g., [14]) show very 
general steps like generate-conjecture-analyze, and simply say to repeat until done. Later 
models, like [44], have a detailed sequence prescribing the order in which a designer 
accomplishes everything from forming the design team to retiring the final product.  

In addition to the above models, quantitative techniques have been proposed to model and 
analyze the sequence of design processes in complex design projects and handle the iterative 
sub-cycles that are commonly found in complex design projects. These techniques include 
Signal Flow Graphs [17, 21] and Design Structure Matrix [38, 42]. 

Design models differ widely across authors, particularly in the names of activities and in the 
level of detail to which tasks are defined.  But the models consistently identify similar types 
of activities as central to design:  problem identification and definition, ideation, evaluation 
and analysis, and iteration as quintessential examples.  Furthermore, most models recognize 
that design projects transition through phases, or alternatively, that designers operate at 
different cognitive levels of abstraction over the course of a design project.  Again, the 
phases or cognitive levels can differ widely and have different labels, but most models start 
with an early conceptual phase, conclude with a detail design phase, and connect the two 
with one or more intermediate phases.  
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In our review of design texts, we were unable to identify any models that had been 
empirically validated or that had explicitly correlated design process to outcome.  Most 
authors seemed to be either expert designers writing from their work experience, or 
academics writing from their teaching experience [26].  In either case, the recommended 
models do not appear have not been based on rigorous research.  Further, the models do not 
appear to be designed specifically for engineering students who can be accurately 
characterized as novice designers.  Should a process that is well-suited to expert designers be 
recommended for novice designers? 

Our intention, then, was to devise a study that would explicitly relate process to outcome and 
empirically validate a general design process model derived from the literature.  This study 
makes at least two important contributions.  First, we describe a novel approach to studying 
design processes using computer design of experiments.  Such an approach allows the 
researcher to leverage powerful statistical techniques to elucidate patterns and relationships 
among variables in the data even without huge sample sizes.  Second, we provide hard 
evidence that on one hand confirms conventional wisdom regarding “good” design processes, 
and on the other hand suggests alterations to conventional models that novice (a.k.a., student) 
designers might follow to achieve a more desirable end result.  The next section describes our 
overall research design, including process and client satisfaction data collection and analysis 
methods. 

RESEARCH METHOD 

This study focuses on the capstone mechanical engineering design projects completed 
between Spring 2001 and Fall 2002 semesters at Montana State University. ME 404, the 
mechanical engineering capstone design course, is a four-credit one-semester course. 
Students are divided into teams of two to four, with a faculty member as advisor. The 
projects are industry sponsored so each team must interact with their client/sponsor to define 
their needs, devise a solution to meet those needs, and deliver a product (set of engineering 
drawings and specifications, written report, oral report, and in many cases a hardware 
prototype) by semester’s end. 

Data Collection: Process Variables 

Researchers have used a number of techniques to collect data on design processes, including 
interviews [7, 23], retrospective and depositional methods [45], protocol analysis [3, 18], and 
direct observation [8]. However, for this study, a novel approach was needed to study design 
process in-situ, spread over 15 week time period (one semester), without a specified location 
or researcher intervention, while capturing exact details when and as they occur.  

Design journals kept by individual students provide an alternative and novel approach to data 
collection that fit our desire to study actual student processes. This data collection technique 
overcomes many of the drawbacks of other research methods.  Compared to interviews, 
retrospective, and depositional methods, the data is collected in real-time, but unlike 
observational approaches, our method does not require specially trained professionals. Like 
protocol analysis, the data can be readily quantified using a suitable coding scheme, but it 
requires little researcher intervention during data collection and therefore is a potentially 
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more accurate representation of the actual design process.  It is also more feasible to collect a 
relatively large sample size compared to videotaping or other approaches because the 
quantity of data captured, while still large, is more manageable.  

As with any data collection method, disadvantages to the technique exist. Journals may offer 
an incomplete record of the design process. The student designers may be unaware of 
important information or may fail to capture critical details regarding the development of the 
design project. As an example, journals can be susceptible to “backfilling,” the tendency for 
students to records events, not as they occur, but in retrospect. Backfilling can lead to 
journals that omit key details; for example, highlighting details viewed as important to the 
final results, but skipping over mistakes made and lessons learned along the way.  Training 
and feedback during the project combined with a grade incentive can help designers 
overcome such shortcomings, but journal quality ultimately depends on the designer’s 
commitment to keeping a good journal.  Fortunately, multiple accounts from different 
members of the design team can serve to cover holes in individual records and to corroborate 
details of the record. 

Students were asked to keep individual design journals (notebooks) to document their work 
over the semester as a part of this project [41]. Journals were periodically evaluated using a 
rubric to help encourage good record keeping, and students were given specific feedback on 
the expectations and quality of their journals. These journals constituted 15 % of the final 
course grade. At project completion, journals were collected and coded according to the 
scheme in Table 1, with times assigned according to the start and end times recorded. 

Table 1: Coding Matrix 
Design Activities 
 Concept (C) System (S) Detail (D) 
Problem Definition (PD) C/PD S/PD D/PD 
Idea Generation (IG) C/IG S/IG D/IG 
Engineering Analysis (EA) C/EA S/EA D/EA 
Design Refinement (DR) C/DR S/DR D/DR 
 
Non-Design Activities 
Project Management PM  
Report Writing RW  
Presentation Preparation PP  

 

Each design related activity received two codes.  The first code designates one of three 
design levels.  Concept-level design addresses a problem or sub-problem with preliminary 
ideas, strategies, and/or approaches.  Common concept design activities are identifying 
customer needs, establishing the design specifications, and generating and selecting concepts. 
System-level design defines the needed subsystems, their configuration and their interfaces. 
Detail-level design activities focus on quantifying specific features required to realize a 
particular concept, for example defining part geometry, choosing materials, or assigning 
tolerances.  From a practical standpoint, serious consideration of basic components (e.g., 
fasteners, shafts, or gears) were often coded “detail” if the problem scope was so narrow as to 
not lend much meaning with respect to the concept or system-level definitions.   
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The coding scheme also delineates four categories of design activity. Problem definition 
(PD) implies gathering and synthesizing information to better understand a problem or design 
idea through activities such as: stating a problem, identifying deliverables, and researching 
existing technologies. Activities in idea generation (IG) are those in which teams explore 
qualitatively different approaches to recognized problems, such as brainstorming activities, 
listing of alternatives, and recording “breakthrough” ideas. Engineering analysis (EA) 
involves formal and informal evaluation of existing design/idea(s), e.g., mathematical 
modeling and decision matrices. Finally, design refinement (DR) activities include modifying 
or adding detail to existing designs or ideas, deciding parameter values, drawing completed 
sketches of a design, and creating engineering drawings using computer-aided design (CAD) 
software. 

The coding scheme also designates codes for non-design activities associated with project 
management and delivery so that every entry could be assigned a code.  Project management 
(PM) covers planning and progress evaluation, including: scheduling, class meetings to 
discuss logistics and deadlines, identifying tasks, and reporting project status. The delivery 
category is for activities associated with interim and final report writing (RW) and final 
presentation preparation (PP). Even though these activities constitute as much as 50% of the 
total project time, a separate analysis found no statistically significant association between 
time spent on PM, PP, and RW activities and the design outcomes (client satisfaction and 
design quality, explained below).  Thus, this study focuses only on the design activities 
described in the previous two paragraphs. 

To give an idea of the kind of data captured in the student journals, a sample journal entry 
appears in Figure 1.  The project from which this sample was taken was to design a “Tater 
Pig” machine that cores a raw potato and inserts a frozen sausage into the cored potato.  The 
first line, “Group needs to…” was coded “PM” (project management) as it is a notation of a 
logistical nature and not directly related to the design problem at hand.  The next block of 
text (11 lines) was coded “D/PD.”  It is problem definition activity (PD) as the student is 
reasoning about the plunger functionality and constraints, and it occurs at a detailed design 
level (D) because the design is focused on one narrowly defined piece of the overall concept.  
The diagram immediately following was coded “D/IG.”  It still concerns a component, so it’s 
at the detailed design level, but the diagram presents a new idea on the geometry of the 
plunger, i.e., idea generation (IG).  The next sketch, however, illustrates the relationships 
between the cutter, the potato, the sausage, and the core.   It was considered system-level 
design (S) since it appears to be visualizing the configuration and interaction among 
components.  But, since a very similar idea appears earlier in the journal, this diagram was 
considered design refinement (DR) rather than idea generation.  Thus the second sketch was 
coded “S/DR.”  The notes below this sketch were coded “D/PD” (detail problem definition) 
and the sketch at the bottom as “D/IG” (detail idea generation) as the student asks some 
questions on the design’s constraints and then sketches a possible solution.   
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Figure 1: Sample Journal Entry 
 

The process of journal coding proceeded in two stages. First, research assistants familiarized 
themselves with the projects by reading the final written reports, then coded data and 
captured times by walking through team members’ journals in lock step, considering all the 
members’ entries for a given day before moving to the next day. Simple rules were devised 
for allocating time, and resolving discrepancies among the different journal accounts.  The 
principal investigator then reviewed the coding as a crosscheck on accuracy and consistency. 
The disagreements were resolved through discussion and the process continued until mutual 
agreement was reached. The time data on the various process variables was then entered into 
a database, and aggregated for the project by combining individual journal data (see [40] for 
more journal coding details). 

The sample size for this study is 14 design projects (47 journals total). The 12 design level-
activity pairs (four activity categories across three design levels) served as the independent 
variables in the model described in later sections.  Thus each project in the sample was 
characterized by a percent allocation of total design time across these 12 variables.  
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Data Collection: Client Satisfaction Data 

It seems fair to define a “good” design process as one that leads to a good outcome. Thus to 
determine the goodness of a design process we need a way to measure the goodness of the 
end product. For this study we developed two outcomes measures, a client satisfaction score 
and a design quality index for the final designed product. Consequently, two separate 
instruments, the Client Satisfaction Questionnaire (CSQ) and the Design Quality Rubric, 
were developed, validated and deployed for measuring client satisfaction and design quality 
quantitatively.   In this paper, we report the methods and results associated with client 
satisfaction. 

The CSQ was developed based in part on previously developed surveys [5, 6, 25, 34], which 
were adapted and expanded to more closely align with our objectives.  The final 
questionnaire was composed of 20 questions. A five-point Likert scale is used for recording 
the responses. 

The survey was validated prior to implementation using content and face validation 
techniques. Analytical hierarchy process [31] was used to determine weights for the metrics 
and the questions in each metric. The respondents were faxed a copy of the survey, then a 
research assistant walked them through the questions by telephone and filled in the responses 
by hand. Next the survey data was analyzed for statistical reliability using the Cronbach’s 
alpha coefficient [33]. The test found that only the quality and overall metrics displayed 
adequate internal consistency and inter-metric consistency.  As a result, the satisfaction index 
was obtained by the summing the weighted average of only these two metrics. Table 2 
displays the measures and Cronbach’s alpha statistics associated with these two metrics.  The 
final satisfaction scores were on a scale of 2-10 with 10 being the highest (each metric being 
on a 1-5 scale, and the two summed). 

Table 2: Client Satisfaction Metrics 

Metric No. Of 
Measures  Measures Cronbach’s � 

Quality 2 

The percentage of the design objectives the client 
thought the team achieved 
The closeness of the final outcome to client’s initial 
expectations. 

0.78 

Overall 4 

Design’s feasibility in its application and fabrication 
Client’s opinion on implementing the design 
Client’s opinion on students’ knowledge of math, 
science and engineering in developing solutions 
Overall satisfaction with the design outcome 

0.70 

 

A complete description of the techniques used to code the responses, missing values analysis, 
descriptive question analysis, and other issues on these instruments can be obtained from [22] 
or [39].  
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Data Analysis Approach 

The small sample size and high dimensionality of the data in this study pose significant 
challenges. To address these concerns, we built a model out of the data currently available 
(so-called happenstance data) and then constructed a metamodel to study the process under 
desired conditions and deduce conclusions about cause and effect relationships within the 
system [32].  If the model is reliable, it should imitate the actual design process and we can 
use it to generate responses in a virtual design of experiments (VDOE).  

We modeled the happenstance data using a principal component neural network, a special 
class of neural networks designed for data with high dimensionality [13, 43]. This hybrid 
architecture reduces the dimensionality of the data to help compensate for the small sample 
size, and allowed us to predict the output in terms of the original variables.  A neural network 
model was constructed using the percent of time spent at each design level/activity 
combination (see Table 1) as inputs, and client satisfaction score as the target variable. A 
subset of the sample (11 exemplars) was used to train the network, and the remaining 
samples were used to cross-validate. To model the design data, several different network 
architectures were constructed and trained using Neurosolutions software [27] with the best 
network chosen using the mean squared errors (MSE) of the training and cross validation sets 
as the judging criteria.  

To determine the relationships among the design process variables and the outcome measure, 
we analyzed a 212-4 fractional factorial experiment design with client satisfaction as the 
response variable. The data for each run in the design grid was simulated via the artificial 
neural network model. For more information on neural networks and their use in statistical 
analysis refer to [35, 37, or 46].  

Due to the deterministic nature of the neural network model, classical notions of 
experimental unit, blocking, replication and randomization were irrelevant in the 
experimental design. The final factorial was a resolution V design with 299 runs. Data 
transformation, model fitting, analysis of variance (ANOVA), model reduction and model 
adequacy checking were all performed in Design Expert software to obtain the response 
curves for various factors and factor interactions. Responses were predicted under various 
process settings within the range of the data utilized to construct the model. Results of the 
analysis are reported in the next section. 

RESULTS 

Table 3 reports the means and standard deviations of the process and outcomes data used in 
the modeling.  The values for the process variables are expressed as percent of total design 
time; for example, teams in the sample spent an average of 13.14% of their total design effort 
(as reported in the journals) on concept level problem definition activity.  The number of 
hours varies considerably across the design process variables with the most amount of time 
spent on design refinement work. A correlation analysis of the 12 variables found only 2 
pairs of variables out of a possible 72 were significantly correlated at a 1% significance level. 
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Table 3: Summary Statistics 

 
Mean  

(% of Time) 
Standard 
Deviation 

Process Data 
C/PD 13.14 9.28 
S/PD 2.16 3.27 
D/PD 8.68 6.10 
C/IG 4.41 2.45 
S/IG 2.83 1.90 
D/IG 2.78 2.87 
C/EA 2.94 3.82 
S/EA 0.80 0.75 
D/EA 24.44 16.72 
C/DR 1.39 2.55 
S/DR 3.54 3.48 
D/DR 32.93 16.90 

Outcome Data 
CSQ 8.14 1.42 

 

Table 4 presents the architecture summary of the neural network model constructed. The 
principal components network reduced the original 12 variables to six independent 
components explaining 99 % of the variation in the data.  The best performing network 
(based on the judging criteria) contains a single hidden layer with 3 hidden neurons.  From 
the learning results, it was observed that the established network architecture had a good 
“memory,” and the trained matrices of weights and bias reflected the hidden functional 
relationship well. Thus the model can serve as a reasonable surrogate to reality.  Finally, 
because the testing and validation errors (MSE) were small and the R-Sq values low, the 
models developed can be considered reliable for the prediction of the response scores under 
any combination of the process parameters as long as they are within the range investigated 
and close to the same level of resolution. 

Table 4: Network Architecture 

Parameter 
Client 

Satisfaction 
Model 

Number of input Variables 12 
Number of Principal Components 6 
Number of hidden layer 1 
Number of hidden neurons 3 
Training set 11 
Testing Set / Cross Validation 3 
Learning Rate 1.75 
Momentum 0.7 
Step Size 0.1 
Number of iterations 1000 
MSE (Training Set) < 0.01 
MSE (Cross Validation Set) < 0.11 
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Next, Table 5 presents the analysis of variance (ANOVA) results for the satisfaction 
experimental design results. The insignificant factors are not included at p � 0.05.  The large 
values of the F-ratios and the small p-values suggest that the terms significantly affect the 
response. Within interactions, the individual variables follow the same trend as their primary 
effects, save that some variables insignificant as primary effects appear significant in 
interactions (specifically D/PD and D/EA). 

Table 5: ANOVA Results of the Satisfaction Experimental Design Results 

Source Sum of 
Squares df Mean 

Square 
F 

Value Prob > F 

Model 206.81 25 8.27 36.32 < 0.001 
C/PD 67.32 1 67.32 295.54 < 0.001 
S/PD 19.48 1 19.48 85.51 < 0.001 
C/IG 9.66 1 9.66 42.43 < 0.001 
S/IG 2.04 1 2.04 8.95 0.003 
D/IG 6.71 1 6.71 29.48 < 0.001 
C/EA 4.50 1 4.50 19.74 < 0.001 
S/EA 6.53 1 6.53 28.69 < 0.001 
C/DR 21.87 1 21.87 96.01 < 0.001 
S/DR 3.46 1 3.46 15.20 < 0.001 
D/DR 15.78 1 15.78 69.27 < 0.001 

 

Table 6 presents an estimate of the relative importance of the significant factors in the VDOE 
model. The slopes of each variable versus the response variable were taken from the response 
plots of the ANOVA, then divided by the absolute value of the smallest magnitude slope 
among significant variables (i.e., D/DR).  These relative slopes estimate the relative impacts 
the independent variables have on the response variable. 

While statistical association does not necessarily imply causality, it appears that the strongest 
positive effect observed in the virtual experiment is that of system level engineering analysis.  
Its effect is 21 times stronger than detail level design refinement. Concept level problem 
definition and idea generation activities, and system level problem definition activities also 
appear to have significantly positive effects.  On the negative side, concept level design 
refinement activity appears as the variable with highest negative impact, followed by concept 
level engineering analysis.  All detail level work has either a negative or insignificant impact 
on customer satisfaction.  System level idea generation is insignificant. 
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Table 6: Relative Factor Slope Scaling 
* Insignificant at p � 0.05 

Factor 
Relative 

Slope 
Estimate 

Conceptual Problem Definition (C/PD) 8.20 
Conceptual Idea Generation (C/IG) 8.16 
Conceptual Engineering Analysis (C/EA) - 4.09 
Conceptual Design Refinement (C/DR) -11.83 
System Problem Definition (S/PD) 9.46 
System Idea Generation (S/IG) * 
System Engineering Analysis (S/EA) 21.06 
System Design Refinement (S/DR) - 4.13 
Detailed Problem Definition (D/PD) * 
Detailed Idea Generation (D/IG) - 7.71 
Detailed Engineering Analysis (D/EA) - 6.06 
Detailed Design Refinement (D/DR) - 1.00 

 

DISCUSSION 

Table 7 displays the general trends in the relationships of individual process variables to 
client satisfaction as determined by the virtual experimental design. The plus and minus signs 
represent statistically significant positive and negative effects (p � 0.05) of the independent 
variables on the response variable.  A single plus or single minus indicates a significant 
factor on the same order of magnitude as detail level design refinement (D/DR), the 
significant variable with the weakest effect.  Double plus or double negative indicates an 
order of magnitude greater impact than D/DR as reported in Table 6.  Blanks denote the 
insignificant factors.   

Table 7: Graphic Display of VDOE Results 

 PD IG EA DR 

C + + – –  – 

S +  + + – 

D  – – – 

 

Several trends can be identified from Table 7: 
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1. Problem definition (PD) at the higher abstraction levels appears positively related to 
client satisfaction. 

2. Client satisfaction improves with greater effort in idea generation (IG) at concept 
level, but not at the system or detail design levels. 

3. Greater time spent on design refinement (DR) activities across all design levels is 
negatively associated with client satisfaction. 

4. Greater time spent at the detail (D) design level appears comparatively non-value 
added to client satisfaction. 

5. Time spent on problem definition and engineering analysis activities at the system 
(S) design level leads to better client satisfaction. 

We develop these themes in more depth in the following subsections, then conclude the 
discussion with study limitations. 

Problem Definition and Project Scoping 

Time spent on problem definition (PD) activity at the higher abstraction levels seems to have 
a strong positive effect on client satisfaction.  Many PD activities can also be classified as 
information gathering, while others are sense-making activities on the collected information.  
Conceptual level problem definition includes activities like an internet or library search on 
existing design solutions, interacting with client to clarify the problem space, researching 
basic design mechanisms or analysis methods, and examining existing designs. Similarly, 
system level problem definition (as seen in design journals) includes activities like exploring 
requirements for the various subsystems, identifying the constraints on interfacing 
mechanisms, and understanding the final assembly sequence for the design.  However the 
effect of similar activities at the detail abstraction level is insignificant.  

Since problem definition activities at higher abstraction levels seem to have a positive impact 
on client satisfaction, it follows that student designers should perhaps focus more on 
activities that help define the problem scope and system architecture issues related to 
concepts under consideration.  Time spent defining problems and gathering information at 
detailed levels (e.g., how do I decide the number of weldments needed?) seems to add little 
to client satisfaction.  These results concur with Adams and Atman’s [1] comparison of 
university freshmen and senior design processes.  They found that problem scoping cycles 
tended to be positively associated with performance – both in terms of design quality and of 
efficiency of design process.  

Idea Generation 

Perhaps the most counter-intuitive result concerns the effect of idea generation (IG) in the 
sample.  Even though it is a generally accepted precept that good designs result from 
processes that consider multiple alternative solutions, our results are mixed across design 
levels. Time spent on idea generation (IG) at the concept design level is positively related to 
the client satisfaction, while idea generation at the detail design level shows a negative 
association with client satisfaction.  Idea generation at the system design level was 
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insignificant.  One might expect idea generation at all levels to associate with higher client 
satisfaction, but this was not the case with this study. 

A possible explanation for this may lie in client expectations coming into the project.  Many 
clients hope for a useable design, but expect to have to put quite a bit more effort into the 
designs to make them feasible.  Clients in this sample seemed to be quite satisfied if they got 
a few new ideas from the project, and have some confidence that these ideas will work.  
Thus, idea generation at higher levels of abstraction is value-added, but idea generation at 
detailed levels would likely be completely redone, so is comparatively non-value-added.  
This might also explain why problem definition activities at concept and system design levels 
are significantly positive, whereas problem definition activities at detailed levels are not 
significant. 

Iteration and Design Refinement 

Table 7 shows that the effect of design refinement (DR) activity is consistently negative 
across all design levels.  Design refinement activities are those that modify existing ideas and 
design solutions and/or that add the finishing details on designs (e.g., specifying tolerances or 
fasteners).  Most CAD work, prototyping work, and design changes based on test or analysis 
results are considered DR.   Design refinement constitutes about 40% of total design time 
devoted to the average student project. 

The negative association of design refinement activity seems consistent with Newstetter and 
McCracken’s [28] observation of a typical student design pattern they term “design 
shutdown.”  They observe a tendency among student designers to focus on one design they 
“like” and try to make it work. Student designers effectively “shutdown” the design from any 
new ideas that could potentially be tested or evaluated in parallel. This often leads to a design 
that does not conform to a certain design constraint and so the student designers tweak the 
design to make it conform to specifications. But doing so leads to other changes needed to 
accommodate the first alterations, and a vicious cycle can ensue. Our study may be capturing 
this phenomenon in the form of the large amounts of effort devoted to design refinement 
activities (especially at the detail design level), suggesting that those teams which lock into 
flawed designs and spend large amounts of effort trying to make them work achieved lower 
client satisfaction scores.  

Although design is generally viewed as an iterative task, there are different types of iteration 
that can be beneficial or detrimental to the design outcome. For example, Costa and Sobek 
[9] classify design iterations as rework, design or behavioral. The authors conclude that 
design teams should try to eliminate rework iterations, perform design iterations without 
skipping abstraction levels, and do behavioral iterations in parallel. We suspect that much of 
the DR activity seen in student design processes is rework iteration.  If that is the case, then 
one would expect more effort on such activities to be associated with poor outcomes.  
Exploring this supposition is the topic of ongoing work.  

Detailed Design Work 

A fourth observation concerns the negative effects and insignificance of the detail design 
work across all the design activities.  This result is consistent with authors on design who 
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agree that the early stages in the design process are the most important.  This result is 
particularly striking considering that student teams spend an average of 70 % of their total 
design time on detail design level work. One of the possible reasons for this could be that 
those design teams who skimp on the conceptual and system level design must compensate 
for it with additional detail level design work, and the trade is not one-for-one.  

This discussion further suggests that there are diminishing returns associated with the 
different levels of design abstraction.  As illustrated in Figure 2, the incremental benefit of 
effort spent at higher levels of abstraction is comparatively greater than the incremental 
benefit of detailed design work.  It follows that more effort during the conceptual and system 
level stages results in better design quality and customer satisfaction. A second curve on the 
plot in Figure 2 illustrates the possibility that too much effort in detailed work may actually 
produce a negative effect. 

Figure 2: Effort vs. Benefit by Design Level  
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System Design Work 

Finally, Table 7 reveals another perhaps surprising trend.  Even though the student design 
teams in our sample spent little time in system-level work as opposed to concept or detail 
work (about 9% of design time on average; see Table 3), system-level activity has the only 
“++” marks in the table.  This suggests that system-level design is a high-leverage activity, 
and yet many design teams do little of it.  Conceptual ideas are difficult to evaluate.  But by 
fleshing out the system-level design, the design team can get a much better estimate of 
performance of an idea without spending the many hours it takes to detail a design.  
Adjustments at the system level are fairly easy to make, while adjustments at the detailed 
level (e.g., in a detailed CAD drawing or prototype) are comparatively time consuming to 
make.  So it seems that effort levied at the system-level issues can prevent time-consuming 
adjustments later in the design process. 

These results are consistent with Ahmed, Wallace and Blessing’s [2] study of the basic 
differences among the design patterns of novice versus more experienced designers. They 
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found that the novice design pattern was to generate ideas, implement them, and then 
evaluate. Experienced designers tend to add a fourth step, “preliminary evaluation”, between 
generate ideas and implementation. Ahmed, et al.’s [2] preliminary evaluation is similar to 
our definition of system-level design. Similarly, Newstetter and McCracken [28] found that 
student designers tend to jump from conceptual to detail-level work, skipping intermediate-
level work.  Ignoring this step leads to a higher probability that the design will have to be 
revised, thereby leading to a trial and error pattern. Combining this pattern with the negative 
trend of design refinement noted above suggests that perhaps excess of design refinement 
activities are a result of overlooking the system level work or skipping the “preliminary 
evaluation” step. 

These observations are particularly striking given that many of the design models in design 
textbooks overlook this step.  Those that include system-level work spend little time on it.  
And there are few tools available today to aid designers in system-level work.  System-level 
design, then, appears to hold high potential for increasing the productivity of designing 
engineers. 

Limitations & Future Continuations 

Like most, this study is not without limitations.  The sample size used to draw the 
conclusions may well be the biggest detractor of this study. Small sample sizes can produce 
inaccurate or misleading results.  However, the data used are aggregate measures and 
potentially possess strong explanatory power.  For example, the 14 projects in the sample 
represent 47 student journals, over 4,000 pages of documentation, and some 8,600 person-
hours of effort.  Since journal data were aggregated to the project level, each data point 
represents dozens if not hundreds of person-hours.  So the data are fairly robust, diminishing 
the drawback of a small (in statistical terms) sample size. 

Second, the results apply only to the range of the data in the sample.  For example, that detail 
level design refinement is negatively associated with client satisfaction does not mean that 
student design teams should avoid these activities and drive this number to zero because zero 
is not within the range of the data in the sample.  Rather, this result simply means that student 
design teams should strive to structure their design projects in such a way as to minimize the 
amount of time and effort required in these activities.  In any case, the conclusions cannot be 
extrapolated beyond the range of the sample data. 

Next, use of questionnaires in measuring satisfaction may include bias despite careful 
measures to avoid it.  Furthermore, the data collected in this study (both process and 
outcome) is to some extent subjective. It can also be argued that the data collected from 
design journals can be inaccurate, incomplete or biased. We addressed these limitations 
through a rigorous cross-checking procedure of the journal coding, statistical validation of 
questionnaire metrics, and using neural networks which are designed specially for noisy data.  
Still, more studies should be conducted to substantiate these findings. 

Another limitation of this study is the number of variables not considered, such as team 
dynamics, team diversity, advisor effects, team experience, and project-related characteristics 
(e.g., whether a prototype was required, whether it was a “clean sheet” project or not).  Some 
may see this as a limitation as these could have provided more insight into the results.  But in 
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some ways it actually strengthens the study:  we get significant results without accounting for 
all of these other sources of variability!  The effects of process, therefore, must be fairly 
strong.   

Lastly, the chronological order of the occurrence of the process variables was not considered.  
It is possible that the timing of the various activities is just as important as whether they 
occur or not and in what amounts.  Thus future work will seek to identify the significance of 
the sequence of the various design process variables. 

CONCLUSION 

This study attempted to gain insight into what design process variables affect outcomes in 
student engineering projects.  We collected data from 14 projects (representing some 60 
students total) and modeled the data using an artificial neural network with a client 
satisfaction score as the target variable.  Then by performing a virtual design of experiments, 
and using the artificial neural network models to predict the magnitude of the response 
variable, we were able to obtain estimates of the relative impacts of the 12 design process 
variables used.  In other words, we could answer which process variables positively or 
negatively impacted project outcomes, and the relative magnitude of those effects.  Thus one 
contribution of this work is demonstrating the viability of virtual designed experiments (also 
called computer design of experiments) as a methodology appropriate for design research.   

A second contribution lies in providing substantive evidence in support of or against design 
processes commonly advocated in design textbooks.  Specifically, they support general 
admonition that problem definition is important to client satisfaction, and that idea 
generation, at least at the more conceptual levels, also has a positive impact.  The results also 
support those design process models that include intermediate design levels.  

On the flip side, students are not expert designers, and our results point towards 
modifications to the more common process models to make them more applicable to novices.  
Numerous studies have found significant differences between novice and expert designers 
across varied fields of study [1, 2, 12, 24, 28]. For example, research suggests that designers 
rely heavily on their memories and experiences [10].  But how do the novice designers rely 
on experience that they do not yet have?  Such research begs an important question: how can 
one design process model be well suited for both novice and expert designers?   

Our study suggests that design process models can be modified in several key aspects to 
produce better design outcomes for engineering students and other inexperienced designers.  
First, problem definition and information gathering activities should receive greater 
prominence than an obligatory mention and exhortation that “it’s important” for good design.  
Further, our results suggest that novice designers should not necessarily be encouraged to 
“try to come up with some ideas,” advice commonly heard from advisors.  Rather, they 
should be encouraged to research existing solutions to similar problems.  In doing so, and 
trying to improve them, the novice engineer begins to build that experience base that will 
enable him/her to become an expert designer.  The idea generation will come naturally, and 
be more substantive. 



19 

Second, our results strongly suggest that students should be encouraged to delay jumping to 
detailed design until sufficient system-level problem definition and analysis work has been 
done.  This could be another way to avoid ideation without substance [28]—require students 
to flesh out and evaluate any idea at the system level before considering it a bona-fide 
alternative.  Additionally, the students’ ability to define an alternative at the system level may 
be a good test as to whether sufficient problem definition work has been done.  The challenge 
here is that system-level design tools are still rare. 

Third, evaluating student design teams based on whether they followed a given process or 
not may not be the wisest course of action.  We simply do not yet have a large research base 
from which to determine what design processes are best for students (although we think this 
study is a start in that direction) since the extant processes purported in the literature have not 
been empirically validated.  It may be better, in the near-term, to include at least some 
assessment of the “goodness” of the students’ end products in the final evaluation.   

Of course, these results are not conclusive (sample consists of 14 projects from one discipline 
at one institution), but they begin to lay the groundwork for additional studies to substantiate 
the design process models advocated in the literature, something that heretofore has not be 
done using statistical analysis.  Studies to further substantiate the well-accepted models 
should continue.  In addition, research into how design/engineering expertise is acquired 
would be highly beneficial.  As previously mentioned, the timing and sequence of design 
process steps is another possible avenue of investigation.  New representations and tools for 
system-level design and analysis are needed.  In short, a good deal of work is still lies ahead 
before we fully understand how to help our students become the best designers they can be. 
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