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ABSTRACT Despite the recognition that the economic injury level (EIL) is determinedbydynamic
biological and economic parameters, which can be highly variable and uncertain, there has been little
effort to quantify uncertainty and to use estimates of uncertainty in the determination of EILs. In this
paper, we deÞne the probabilistic EIL (PEIL) and develop PEILs for two insect pest scenarios: alfalfa
weevil larvae, Hypera postica (Gyllenhal), on early bud-stage alfalfa, and bean leaf beetle adults,
Cerotoma trifurcata (Forster), on V1-stage soybean. The PEIL is an EIL that reßects its probability
of occurrence. The probability of occurrence is determined by incorporating the uncertainty asso-
ciated with the input variables used to calculate the EIL. We used Monte Carlo simulation, a random
sampling technique in which each input variable in the model was sampled repeatedly from a range
of possible values based on probability distributions. Each input variableÕs probability distributionwas
sampled such that the distributionÕs shape was reproduced. Then, the variability for each input was
propagated into the output of the model so that the model output reßected the probability of values
that could occur. This represents the Þrst use of the Monte Carlo technique to determine EILs.
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THEECONOMIC INJURY LEVEL(EIL) is akeystoneconcept
in integrated pest management (IPM). Although its
central tenets have never been adequately articulated
in a single treatise (Higley and Pedigo 1993, Peterson
1996), IPMclearly is based on the premise that certain
levels of pests are tolerable. Consequently, the EIL
represents a theoretical foundation for IPMbecause it
provides information on how much pest injury and
howmanypests are tolerable. Indeed, theEILconcept
is primarily responsible for the transition of pest man-
agement technology from an identify-and-spray ap-
proach to an IPM approach (Peterson and Higley
2002).
TheEIL remains an important conceptual andprac-

tical tool for IPM in many crop species and systems.
Currently, the EIL and the economic threshold (ET)
are the most commonly used decision tools in IPM
(Pedigo and Higley 1996).

Evolution of the EIL

Conceptually, theEIL ismerely a cost-beneÞt equa-
tion in which the costs (losses associated with man-
aging the pest) are balanced with the beneÞts (losses
prevented by managing the pest). Stern et al. (1959)

deÞned the EIL, but it would be another 13 yr before
a formula for calculating theEILwasproduced (Stone
and Pedigo 1972). Largely because of the accessibility
of the EIL model promulgated by Stone and Pedigo
(1972), there are now�200 published articles onEILs
and ETs (Peterson 1996).
The most commonly used equation to determine

the EIL is:

EIL � C/VIDK,

where C is the management costs per production unit
(e.g., $/ha),V is themarket value per production unit
(e.g., $/kg), I is the injury unit per pest equivalent, D
is the damage per unit injury (e.g., kg reduction/ha/
injury unit), and K is the proportional reduction in
injury with management.
As can be deduced from the equation, the EIL

actually represents a level of injury rather than a
density of pests. However, numbers of pests per unit
area or sample unit often are used because injury is
difÞcult to quantify. Therefore, pest numbers are used
as an index for injury.
Conceptual advances in the EIL have occurred pri-

marily through extensions of the Stone and Pedigo
(1972) model. The major advances include aesthetic
injury levels, multiple-species EILs, and environmen-
tal EILs (EEILs). (see Peterson 1996 for a thorough
review of conceptual advances.)
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Uncertainty and the EIL

The EIL includes both economic and biological
parameters. All of theparameters used to calculate the
EIL are subject to varying amounts of inherent vari-
ability and uncertainty. We deÞne variability as an
inherent property of nature in which there is heter-
ogeneity of values over time or space. We deÞne
uncertainty as lack of knowledge about the true value
of a quantity (Cullen and Frey 1999). Perhaps the
most obvious uncertain variable is market value per
production unit,V.Apestmanagement action often is
required several weeks before harvest of a crop. Con-
sequently, it becomes necessary to estimate what the
market value will be when the producer eventually
sells the crop. The proportional reduction in injury
with management, K, such as the efÞcacy of a partic-
ular pesticide, may not be known or may be quite
variable. The injury per pest equivalent, I, anddamage
per unit injury, D, may be highly variable because of
inherent biological variability, or they may be highly
uncertain because of a limited number of studies con-
ducted to characterize those parameters. The man-
agement costs per production unit, C, are less uncer-
tainbecauseof theability to incorporateknownvalues
for application, pesticide, and fuel costs very close to
the time of management action.

Quantifying Uncertainty

Pest management decision-making nearly always
occurs under uncertainty. Aside from uncertainty as-
sociated with the EIL parameters, uncertainty asso-
ciatedwith sampling pests also occurs. Because a sam-
ple represents only an estimate of the true pest
density, uncertainty associated with sampling preci-
sion and accuracy must be incorporated into the sam-
pling program and resulting decision-making process
(Brewer et al. 1994, Buntin 1994).
The EIL typically is calculated by taking mean val-

ues for theparametersC,V, I, andD.TheKvalueoften
is set to one to indicate 100% efÞcacy for the control
tactic. Despite the recognition that the EIL is deter-
mined by dynamic biological and economic parame-
ters (Pedigo et al. 1986, Peterson 1996), which can be
highly variable and uncertain, there has been little
effort to quantify uncertainty and to use estimates of
uncertainty in the determination of EILs (Peterson
1996). Plant (1986) explored uncertainty associated
with the proportion of pest population killed by a
pesticide,K, and showed that it may have a substantial
effect on the calculated EIL. Auld and Tisdell (1987)
used economic techniques, such as maximization of
net gain, to determine whether to control weed pests
when weed densities and the crop-loss function are
uncertain.
In this paper, we deÞne the probabilistic EIL

(PEIL) and develop PEILs for two insect pest cases:
alfalfa weevil larvae, Hypera postica (Gyllenhal), on
early bud-stage alfalfa, and bean leaf beetle adults,
Cerotoma trifurcata (Forster), on V1-stage soybean.
To accomplish this, we used Monte Carlo simulation,

a random sampling technique in which each input
variable in the model is sampled repeatedly from a
range of possible values based on probability distri-
butions. Each input variableÕs probability distribution
is sampled such that the distributionÕs shape is repro-
duced. Then, the variability for each input is propa-
gated into the output of themodel such that themodel
output reßects the probability of values that could
occur (Vose 1996).
Monte Carlo simulations are used as decision-mak-

ing tools formany economic and environmental prob-
lems. In this article, we present the Þrst use of the
Monte Carlo technique to determine EILs.We deÞne
the PEIL as an EIL that reßects its probability of
occurrence. The probability of occurrence is deter-
mined by incorporating the uncertainty associated
with the input variables used to calculate the EIL.

Materials and Methods

Alfalfa Weevil Larvae and Early Bud-Stage Alfalfa

Data for the I and D variables were obtained from
Peterson et al. (1993). Injury per pest equivalent, I,
was expressed as the total consumption in leaf dry
weight by both third and fourth instars (milligram/
larva). Damage per unit injury, D, was expressed as
yield loss per mg leaf dry weight removed per stem
(kg/ha/mg). Data for the K variable were obtained
from the experience of the authors and Arthropod
Management Tests (1999-2001). Percentage control
data for alfalfa weevil larvae were obtained from pub-
lished entries between 1999 and 2001. Only currently
registered insecticides from tests conducted in the
Midwestern United States were used. Data for the V
variable were obtained from Nebraska Agricultural
Statistics Service (2001, 2002). The model used aver-
age monthly prices received by farmers for baled al-
falfa hay inNebraska fromJanuary throughDecember
2001. A single management cost, C, value of $24.71/ha
($10/acre) was used. We used a single value instead
of a range of values because we assumed there would
beahighcertaintyofknowledgeregardingapplication
costs at the time the management tactic was applied.
Table 1 includes a summary for all input data and
associated distributions.

Bean Leaf Beetle Adults and V1-Stage Soybean

Data for the I and D variables were obtained from
Hunt et al. (1995) and T. E. Hunt (unpublished data).
Injuryperpest equivalent, I,wasexpressedas thedaily
leaf tissue consumption rate (variable) times thenum-
ber of feeding days (Þxed � 14) times the leaf tissue
injuryexpansioncoefÞcient (Þxed�2.81)(Huntet al.
1995). The values and distribution for total leaf area
lossperbean leafbeetle adultperday(cm2/beetle/d),
or daily leaf tissue consumption rate, were estimated
by T. E. Hunt based on personal experience, unpub-
lished data, and data fromHunt et al. (1995). Damage
per unit injury, D, was expressed as yield loss per
square centimeter of leaf tissue loss per plant
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(kg/ha/cm2). Data for the K variable were estimated
basedon theexperienceofT.E.Hunt.The insecticidal
control for bean leaf beetle adults on seedling soybean
in Nebraska typically ranges between 95 and 100%.
Data for the V variable were obtained from Minne-
apolis Grain Exchange (2001). The model used na-
tional soybean average weekly prices per bushel from
January through December 2001. As with the alfalfa
weevil analysis, a single management cost, C, value of
$24.71/ha ($10/acre) was used. Table 1 includes a
summary for all input data and associated distribu-
tions.

Analysis

We used Monte Carlo analysis (Crystal Ball 2000
ver. 5.2; Decisioneering, Denver, CO) to evaluate in-
put variables and their effect on the EIL. We per-
formed 10,000 iterations for distributional analysis us-
ing the input assumptions from Table 1. The software
model calculated 10,000 EILs by randomly selecting a
value from the distributions of each variable based on
their probability of occurrence. The probability of
occurrence is determined by incorporating the un-
certainty associated with the input variables used to
calculate the EIL. Each input variableÕs probability
distribution was sampled such that the distributionÕs
shape was reproduced. Then, the variability for each
input was propagated into the output of the model so
that the model output reßected the probability of
values that could occur.

For example, to calculate EILs for alfalfa weevil
larvae on early-bud stage alfalfa, the equation used
was:

EIL � C/VIDK,

whereEIL is the alfalfaweevil larvae per stem,C is the
insecticide and application cost per hectare ($/ha),V
is the market value per kg ($/kg), I is the total con-
sumption in leaf dry weight by both third and fourth
instars (milligrams/larva), D is the yield loss per mil-
ligram leaf dryweight removed per stem (kg/ha/mg),
and K is the percent control with insecticide. The
softwaremodel calculated 10,000EILsusing the above
equation.For eachEILcalculation, thevalue forCwas
held constant at $24.71/ha and the values for V, I, D,
and K were selected randomly based on their proba-
bilities of occurrence, as determined from their dis-
tributions.For example, thevalues forDwere selected
randomly from a truncated normal distribution with a
mean of 7.7 kg/ha yield loss/mg dry weight removed/
stem and an SD of 1.89 (Table 1). This means that the
majority of values randomly selected and used to cal-
culate an EIL were selected within 1 SD of the mean.
Thevalues representing theupper and lower 5%of the
distributions were selected randomly, but only were
selected in 5% of the resulting 10,000 EIL calculations.
Because the variability for each input is propagated
into theoutput of themodel, themodel output reßects
the probability of values that could occur. Therefore,
the output is a distribution of EIL values (Fig. 1). All
presentations in this paper of input values and distri-
butions and output statistics and distributions follow

Table 1. Input distributions for probabilistic analysis of economic injury levels

Input distribution Distribution type Parameter Value Unit

Alfalfa weevil
Injury per pest Normal (truncated) Mean 8.09 mg leaf dry wt.
equivalent, I SD 1.1 consumed/larva

Lower bound 0
Damage per unit Normal (truncated) Mean 7.7 kg/ha yield loss/mg
injury, D SD 1.89 dry wt. removed/stem

Lower bound 0
Proportional reduction Triangular Minimum 90 % control
in injury with Likeliest 95
management, K Maximum 100

Market value, V Custom Single points 0.078, 0.079, 0.08, 0.082, 0.082, 0.082, 0.082,
0.085, 0.089, 0.09, 0.096, 0.097

$/kg baled hay

Control cost, C Ñ Fixed value 24.71 $/ha

Bean leaf beetle
Injury per pest Triangular Minimum 7.08 cm2 of leaf
equivalent, I Likeliest 8.26 tissue/beetle/d*

Maximum 17.31 Injury expansion
CoefÞcient* feeding
days

Damage per unit Normal (truncated) Mean 1.33 kg/ha yield loss/cm2

injury, D SD 0.27 leaf tissue loss/plant
Lower bound 0

Proportional reduction Triangular Minimum 95 % control
in injury with Likeliest 97.5
management, K Maximum 100

Market value, V Triangular Minimum 0.14 $/kg
Likeliest 0.15
Maximum 0.19

Control cost, C Ñ Fixed value 24.71 $/ha
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best practices and guiding principles for Monte Carlo
analyses (U.S. EPA 1997).

Results

The distribution of EIL values determined from
10,000 iterations of input values was lognormal for
both alfalfa weevil and bean leaf beetle simulations
(Fig. 1). The statistical summaries for both simulations
reveal that the distributions have high kurtosis
(peakedness) and positive skewness, indicative that
high-end estimates of EILs are atypical events
(Table 2).

Contributors to Variance

AlfalfaWeevil.The sensitivity analysismeasured by
contribution tovariance foreach inputvalue indicated
that the primary contributor to variance was damage
per unit injury, D (Table 3). Injury per alfalfa weevil
larva, I, contributed 21.1% tooverall variance,whereas
market value, V, and percent control, K, contributed
5.1 and 0.4%, respectively.

Bean Leaf Beetle. As with the alfalfa weevil sce-
nario, the sensitivity analysis indicated that the pri-
mary contributor to variance was damage per unit
injury, D (Table 3). However, injury per bean leaf
beetle adult, I, contributed 40.8% to overall variance.
Market value, V, and percent control, K, contributed
5 and 0.1%, respectively.
Understanding which variables contribute to vari-

ance inEILscanprovide important insights into future

Fig. 1. PEIL distributions for the alfalfa weevil (top) and the bean leaf beetle (bottom).

Table 2. Summary statistics for each case simulation

Output statistics

Values

Alfalfa weevil
Bean leaf
beetle

Trials 10,000 10,000
Mean 5.35 9.82
Median 4.94 9.22
SD 2.14 10.21
SE 0.02 0.03
Skewness 14 2.18
Kurtosis 596 15.11
Range 1.98Ð117.39 3.88Ð51.86
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research direction and prioritization of effort. For
example, given that injuryper pest, I, is responsible for
40.8%of the variability inEILs for thebean leaf beetle,
future research efforts should be directed toward re-
ducing uncertainty associated with that variable. Ex-
perimental variability associated with measurements
of adult bean leaf beetle feeding most likely is large
and may be much larger than biological variability.
Because we do not know how much of the variability
is attributable to biological versus experimental vari-
ability, future efforts should attempt to delineate the
two so that the variability that is used in the EIL
calculation reßects on the inherent biological variabil-
ity.
Similarly, research efforts should be directed to-

ward better understanding of damage per unit injury,
D, for both bean leaf beetle and alfalfa weevil. Con-
versely, little research effort needs to be expended to
reducing uncertainty associated with estimates of
market value,V, and percent control,K, because they
contribute very little variance to the Þnal EIL values.
TheD variables for both simulations represent a single
study replicated twice. For example, theD variable for
alfalfa weevil was based on a Þeld study conducted
over only two Þeld seasons in eastern Nebraska. Con-
sequently, variability and uncertainty are large. Al-
though there will always be some inherent biological
variability, additional studies would help to better
understand both biological and experimental variabil-
ity and uncertainty, resulting in more certainty in the
EIL estimations.

Pest Management Decision-Making Using PEILs

Percentiles of EILs from the bean leaf beetle sim-
ulation indicate that the median value was 9.22 bee-
tles/plant (Table 4). This value was only 0.21 beetles/
plant less than the mean EIL of 9.43, which
represented a typical value determined by usingmean
values for I, D, V, andK (see Table 1 formean values).
By incorporating uncertainty into the calculation of
EILs, the EIL is effectively reduced by only 0.21 bee-
tles/plant if the median value is used as the decision
threshold. Percentiles of EILs from the alfalfa weevil
simulation revealed that the median value was 4.94
larvae/stem (Table 4). This value was very similar to
the mean EIL of 4.91 larvae/stem, which represented
a value determined by usingmean values for the input
variables.
The practical value of the PEIL is that multiple EIL

values ranked as percentiles of the Monte Carlo dis-

tributional analysis allow thedecisionmaker to choose
her or his level of risk within an IPM program (Table
5). For example, if the decision maker is risk averse
(i.e., she does not want to risk economic injury even
if itmeans spraying in theabsenceofeconomic injury)
and needs to decide which threshold to use for alfalfa
weevil, shemay choose aPEILof 4.1 larvae/stem.This
PEIL represents the 25th percentile of values as de-
termined from the model output. The use of 4.1 lar-
vae/stem as the PEIL ensures that an EIL � 4.1 will
occur only 25% of the time; therefore, the decision
maker will use a sufÞciently conservative value 75% of
the time.The risk to thedecisionmaker is 25%, andher
certainty or conÞdence is 75%. Conversely, if the de-
cisionmaker is risk seeking (i.e., she is willing to incur
modest economic injury and avoid the cost of spray-
ing), she may choose the PEIL at the 75th percentile.
The PEIL of 6.1 larvae/stem will be sufÞciently con-
servative only 25% of the time.
The choice of risk level is dependent on numerous

factors. These include, but are not limited to, conÞ-
dence in the knowledge and data underlying the
PEILs and the type and economic value of the pro-
duction system. For example, in an alfalfa production

Table 3. Input variables and their percentage contribution to
variance of EIL model outputs

Variable
% Contribution to variance

Alfalfa weevil Bean leaf beetle

Damage per unit
injury, D

72.1 54.1

Injury per insect, I 22.3 40.8
Market value, V 5.1 5
Percent control, K 0.5 0.1

Table 4. Ranked percentiles of EIL’s determined from case
simulations

Percentile
Values

Alfalfa weevil Bean leaf beetle

0 1.98 3.88
5 3.19 6.06
10 3.49 6.59
15 3.73 6.97
20 3.93 7.36
25 4.10 7.7
30 4.27 8
35 4.45 8.29
40 4.60 8.6
45 4.77 8.9
50 4.94 9.22
55 5.12 9.55
60 5.31 9.91
65 5.52 10.3
70 5.77 10.73
75 6.06 11.21
80 6.42 11.82
85 6.89 12.58
90 7.52 13.72
95 8.78 15.4
100 117.39 51.86

Table 5. Probabilistic EILs for alfalfa weevil and bean leaf
beetle

Pest
PEIL for each risk levela

5% 10% 25% 50% 75% 90% 95%

Alfalfa weevil 3.2b 3.5 4.1 4.9 6.1 7.5 8.8
Bean leaf beetle 6.1c 6.6 7.7 9.2 11.2 13.7 15.4

a Percentage value reßects the level of risk accrued if the decision
maker uses the respective PEIL value. For example, if 4.1 larvae/stem
is used by the decision maker for alfalfa weevil, then there is a 25%
risk that the actual EIL will be lower.

b Alfalfa weevil larvae/stem on early-bud stage alfalfa.
c Bean leaf beetle adults/plant on V1-stage soybean.
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system where the alfalfa will be sold as premium hay
for horses, the decision maker may use a more con-
servative EIL than a decisionmaker in a systemwhere
the alfalfa only will be used for on-farm livestock.
Because the contribution to bean leaf beetle EIL vari-
ance from the I (injury per pest) variable is so large,
a decision maker may be satisÞed with using the me-
dian EIL value because hemay be concerned that the
varianceprimarily is fromexperimental variability, not
inherent biological variability.
Like the majority of conceptual advances in the

EIL, the PEIL is an extension of the Stone and Pedigo
(1972) model. The PEIL adds value to pest manage-
ment decision making because it formally and quan-
titatively incorporates uncertainty into the EIL. Fur-
thermore, it allows the decision maker to choose an
EIL based on her or his desired level of risk. Conse-
quently, the PEIL is a more ßexible tool than tradi-
tional economic thresholds.
Although the PEIL adds value to pest management

decision making, it potentially represents substantial
limitations. The probabilistic distribution of PEIL val-
ues reßects both experimental and biological variabil-
ity for I, D, and K. Understanding the contribution
from each type of variability to the PEIL values is
important because PEILs that incorporate large ex-
perimental variability do not only represent biological
variability and therefore are not accurate. To better
understand both types of variability, experiments
would need to be replicated several times and the
distributions generated from a group of mean values.
However, replication of injury per pest and damage
per pest injury experiments is expensive. Typically,
studiesdesigned todetermineEILs are replicatedonly
twice (once per growing season over two seasons),
which would produce only two mean values.
PEILs aremore complex thannominal thresholds or

simple calculated EILs. The ability of typical IPM
decision makers, such as individual growers and con-
sultants, to calculate PEILs would be limited because
their calculation requires relatively expensive and so-
phisticated Monte Carlo simulation software. There-
fore, care must be taken to implement them properly
in an IPM program so that decision makers could gain
maximum value from using them. Indeed, the sophis-
tication of EILs must be balanced with their accessi-
bility to the end user (Peterson 1996). Therefore, the
most valuable implementation strategy for PEILsmost
likely would be for university extension specialists to
calculate them each year (because of changes in an-
ticipated crop market values), convert them to eco-
nomic thresholds, and present them to decision mak-
ers as a grid similar to Table 5. Using this presentation
style, IPM decision makers personally can choose an
economic threshold based on their acceptable level of
risk.

Acknowledgments

We thank S. Blodgett, G. Johnson, and A. Lenssen (Mon-
tana State University) for reviews of earlier versions of this
manuscript.Thismanuscripthasbeenassigned Journal Series

No. 2002Ð52, MT Agricultural Experiment Station, Montana
State University, and Contribution 1141 of the Entomology
Department, Journal Series number 13826, University of Ne-
braska-LincolnAgricultural ResearchDivisionContribution.

References Cited

Auld, B. A., and C. A. Tisdell. 1987. Economic thresholds
and response to uncertainty in weed control. Agric. Syst.
25: 219Ð227.

Brewer, M. J., D. E. Legg, and J. E. Kaltenbach. 1994. Com-
parisons of three sequential sampling plans using bino-
mial counts to classify insect infestation with respect to
decision thresholds. Environ. Entomol. 23: 812Ð826.

Buntin, G. D. 1994. Developing a primary sampling pro-
gram, pp. 99Ð115. InL. P. Pedigo andG.D. Buntin (eds.),
Handbook of sampling methods for arthropods in agri-
culture. CRC, Boca Raton, FL.

Cullen, A.C., andH.C. Frey. 1999. Probabilistic techniques
in exposure assessment: a handbook for dealing with
variability and uncertainty inmodels and inputs. Plenum,
New York.

[EPA] U.S. Environmental Protection Agency. 1997. Guid-
ing principles for Monte Carlo analysis. EPA 630/R-97/
001. U.S. Environmental ProtectionAgency,Washington,
DC.

[ESA] Entomological Society of America. 1999. F6, F7, F9,
and F12. In K. Saxena [ed.], Arthropod Management
Tests, vol. 24.Entomological SocietyofAmerica,Lanham,
MD. (http://www.entsoc.org/Protected/AMT/amt1999/
index.html)

[ESA] Entomological Society of America. 2000. F2, F5, F6,
andF8. InK. Saxena [ed.],ArthropodManagementTests,
vol. 25. Entomological Society of America, Lanham, MD.
(http://www.entsoc.org/Protected/AMT/AMT25/index.
asp)

[ESA] Entomological Society of America. 2001. F1 and F3.
InK. Saxena [ed.], ArthropodManagement Tests, vol. 26.
Entomological SocietyofAmerica,Lanham,MD.(http://
www.entsoc.org/Protected/AMT/AMT26/index.asp)

Higley, L. G., and L. P. Pedigo. 1993. Economic injury level
concepts and their use in sustaining environmental qual-
ity. Agric. Ecosyst. Environ. 46: 233Ð243.

Hunt, T. E., L. G. Higley, and J. F. Witkowski. 1995. Bean
leaf beetle injury to seedling soybean: consumption,
effects of leaf expansion, and economic injury levels.
Agron. J. 87: 183Ð188.

[MGEX] Minneapolis Grain Exchange. 2001. National
Soybean Index (http://www.mgex.com).

[NASS] Nebraska Agricultural Statistics Service. 2001, 2002.
NebraskaAgri-Facts,NebraskaAgricultural StatisticsSer-
vice (http://www.agr.state.ne.us/agstats/index.htm).

Pedigo, L. P., and L. G. Higley. 1996. Introduction to pest
management and thresholds, pp. 3Ð9. In Economic
thresholds for integrated pest management. University of
Nebraska Press, Lincoln, NE.

Pedigo, L. P., S. H. Hutchins, and L. G. Higley. 1986. Eco-
nomic injury levels in theory and practice. Annu. Rev.
Entomol. 31: 341Ð368.

Peterson, R.K.D. 1996. The status of economic-injury-level
development, pp. 151Ð178. In L. G. Higley and L. P.
Pedigo (eds.), Economic thresholds for integrated pest
management. University of Nebraska Press, Lincoln, NE.

Peterson, R.K.D., and L. G. Higley. 2002. Economic deci-
sion levels, pp. 228Ð230. In D. Pimentel (ed.), Encyclo-
pedia of pest management. Marcel Dekker, New York.

June 2003 PETERSON AND HUNT: PROBABILISTIC ECONOMIC INJURY LEVELS 541



Peterson, R.K.D., S. D. Danielson, and L. G. Higley. 1993.
Yield responsesof alfalfa to simulatedalfalfaweevil injury
and development of economic injury levels. Agron. J. 85:
595Ð601.

Plant, R. E. 1986. Uncertainty and the economic threshold.
J. Econ. Entomol. 79: 1Ð6.

Stern, V. M., R. F. Smith, R. van den Bosch, and K. S. Hagen.
1959. The integrated control concept. Hilgardia 29: 81Ð
101.

Stone, J. D., and L. P. Pedigo. 1972. Development and
economic-injury level of the green cloverworm on soy-
bean in Iowa. J. Econ. Entomol. 65: 197Ð201.

Vose, D. 1996. Quantitative risk analysis: a guide to Monte
Carlo simulation. Wiley, New York.

Received for publication 9 August 2002; accepted 31 Decem-
ber 2002.

542 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 96, no. 3


