
EE475 Lab #3 Fall 2003

Placement of Code and Data in HC12 Memory

In this lab you will investigate the way in which the Cosmic compiler and linker interact
to place your compiled code and data in the memory of the HC12 evaluation board.

Preliminaries
1. Make a temporary local folder for your work:

c:\EEClasses\EE475\tempxxx .

2. To save time, copy your Lab #1 project into your temp directory. If you don’t
have the Lab #1 files anymore, obtain them again from the class web site.

3. Launch the Cosmic CPU12 program. You will need to create a new project as
you did in Lab #1. If you still have a copy of the lab1.prj project, open it,
then use Save As… to make a new lab3.prj project file for this week
without having to re-enter all the parameters. You will need to remove the
lab1.c file from the project file list. Be sure to keep a copy of your unaltered
Lab #1 files for future reference.

4. We will use the new CME-12BC32 HC12 Development Boards this week and for
the rest of the course. These boards have the D-Bug12 monitor routines located at
a different address than before. You will need to edit Dbug12.h to change the
base address of the monitor. In Dbug12.h find the line:
 #define DBug12FNP ((UserFNP)0xfe00)
and change the address to:
 #define DBug12FNP ((UserFNP)0xf680)

5. Rename the lab1.lkf file to lab3.lkf . Then use CPU12 to open the .lkf
(linker directive) file. Edit the object file name from lab1.o to lab3.o . Also,
change the program start address specified in the .lkf file to be 0x1000 instead
of 0x4000.

Note: You will want to keep a copy of your lab work on a network drive or a floppy disk
since you will want to use this code as the basis for new lab assignments in the future.

Exercise #1:
Use CPU12 to create a new file called lab3.c , and write a minimal “do almost
nothing” C program:

include "DBug12.h"

void main(void)
{
 _asm("swi");
}

EE475 Lab #3 2

Add the file lab3.c to the list of files in the project Files icon. Then build (compile and
link) the program.

BEFORE you download the S records to the board using Hyperterm, use the D-Bug12
monitor to set the EVB RAM (0x1000-0x3fff) to be all zeros. The command at the
monitor prompt in Hyperterm is: ‘bf 1000 3fff 0’ (bf means ‘block fill’ and the
syntax is BF <StartAddress> <EndAddress> [<data>]).

Load the S records from the compiler to the eval board using the cut-paste technique and
Hyperterm: select and copy the S records from the window, type ‘load’at the monitor
prompt in Hyperterm, then select the “paste to host” menu command.

Run the program by typing ‘g 1000’ (remember that the program start address was
changed to 0x1000 in the linker directives file!). The program should simply cause a
software interrupt (User Breakpoint Encountered) due to the ‘swi’ instruction.

In CPU12 find the linker output window lab3.h12 (or .map file) containing the
segments and symbols list, etc. Note that your linked program contains 5 segments: .text,
.const, .data, .bss, and .debug. The first three are specified in the lab3.lkf file, and
contain your compiled program code (.text segment), program constants (.const), and
static program data (.data).

For this minimal C program note that the program occupies only a few dozen bytes, and
there are no constants and no static data.

→ Copy the “segments:” portion of the linker window and include it in your lab report.

The D-Bug12 monitor allows you to view and modify memory on the EVB. Using the
monitor ‘ASM’ command, take a look at the assembly language instructions created by
the compiler which were loaded to 0x1000 in the HC12 memory.

 Can you find the SWI instruction generated by your C code?
 Can you find where the program ends and the block-filled zeros start?
 Does the size of the program match the number of bytes indicated in the linker

output file?

→ Copy the assembly instructions for the entire program from the Hyperterm window
and include it in your lab report. Give a summary of what each HC12 assembly
instruction does.

Exercise #2:
Use CPU12 to edit the lab3.lkf file so that the code start address is 0x1500 instead
of 0x1000. Rebuild the C program and download it to the EVB (do NOT zero out the
memory this time).

EE475 Lab #3 3

Using the monitor ‘ASM’ command, observe the memory beginning at address 0x1500.
Is the program there? Is the program also still located at 0x1000 from the original
download? Type ‘g 1500’ to run the program in its newly downloaded location, and
‘g 1000’ to run the originally loaded program.

→ Show the instructor that two copies of your program are located in memory at the
0x1000 and 0x1500 addresses.

Exercise #3:
Edit your C program to include a print statement before the _asm("swi"); line:

DBug12FNP->printf("Hello, World!\n\r");

Build the program and observe the linker output file. Note that the .const segment now
contains some bytes, since the constant string Hello, World!\n\r has been
located there by the linker, along with its required null terminator.

Download and run the program. Using the address information from the linker output
file, locate the Hello, World string in memory using the ‘MD’ (memory display)
monitor command. Is the string stored in the right place? Are all the characters stored
correctly? Is the amount of storage correct?

→ Show the instructor that the string is located in memory at the location specified by the
linker output file.

Finally, try changing the text of the printf() string and verify your understanding of
the memory size and placement.

Exercise #4:
Next you will investigate what happens when you declare an array in various ways:
automatic, automatic initialized, static, and global. Make the following modifications to
your C program:

1. Edit your C program by adding the statements within the main() block:

 char buf[40];

 buf[0]='\0';

This creates an automatic storage class array and simply sticks a null in it. Build
the program and write down the size of each segment from the linker output file.

EE475 Lab #3 4

2. Now edit your C program to change the declaration to be initialized:

 char buf[40]={"test"};

Rebuild and note the size of each segment from the linker output file.

3. Again edit your C program to change the declaration to static:

 static char buf[40]={"test"};

Rebuild and note the size of each segment.

4. Finally, make the buf array declaration global by moving it up outside of the
main() function, i.e.,

include "DBug12.h"

char buf[40];

void main(void)
{

…
Note that the memory requirements and linker behavior differ depending on the class of
storage used.

1. If the buffer is automatic and uninitialized, it will only appear on the stack and no
memory is allocated explicitly in the program.

2. If the buffer is automatic but must be initialized, the code image now must
include the initialization string AND some additional instructions that will copy
the initialization string into the buffer (on the stack) before it is used.

3. If the storage class is static, the buffer is placed in the static .data segment and no
initialization code is needed.

4. Finally, if the buffer is declared global, the linker places it in the global memory
segment.

→ Show the instructor your table of the memory segment sizes for the four cases listed
above. Also include this information in your report.

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, answer the given
questions and demonstrate your understanding of the exercise. Include commented file
excerpts and the instructor verification sheet to get credit for the lab.

This lab report is due the beginning of the lab period in one week.

