
EE475 Lab #8 Fall 2003

Task Creation and Management with µC/OS-II

In this lab you will use a version of the µc/OS-II operating system ported for the x86
processor of the PC. The source code is compiled and linked as a console application
from the DOS command line. Although these exercises will run µc/OS-II in a command
window within the Windows XP environment, the code principles and behavior apply
equally well for general embedded systems. This lab uses the Example #1 code from
Chapter 1 in the textbook as a starting point, so be sure to understand the essential
features of the example project.

Preliminaries
1. To build this particular version of the µc/OS-II code you will need to have a

vintage version of the Borland C compiler and the proper source code files.
CHECK the computer to see that it has the compiler directory
c:\Borland\bc31 and the µC/OS-II source files directory c:\Micrium .
If either or both of these directories do not exist on your machine, install the files
from the course web site: unzip turbocpp.zip to c:\Borland\bc31 (be
sure ‘use folder names’ is checked before you unzip), and unzip micrium.zip
to c:\ (also with ‘use folder names’ checked).

2. Make a temporary local folder for your lab work:
c:\EEClasses\EE475\tempxxx .

3. Unzip ex1.zip from the course web site into your temporary directory. These
are the example #1 project files.

Exercise #1: Build the Example µC Project
Open a command window (cmd.exe) and cd to the local temp folder where you
unzipped the ex1 files. The folder contains the example code (test.c), header files
(includes.h, os_cfg.h), and the build instructions (test.lnk, test.mak,
test.rsp, and maketest.bat).

a) At the command line, run maketest.bat, which builds the executable
test.exe . There may be some warnings during the build process, but if any
errors appear you will need to track down and fix the problem(s).

b) Run the test.exe program and observe its behavior: the example code creates
10 tasks, each of which selects a random location on the screen and prints its task
number (0-9). You can read the details in the textbook (section 1.01, pp. 2-10).

c) The test.c program creates a task called taskStart(), which then calls a
function TaskStartCreateTasks() to launch N_TASKS instances of the
Task() function. Find this function in the test.c file. Now edit the test.c
program so that the Task() functions will display the letters ‘A’, ‘B’, … instead

 1

EE475 Lab #8 Fall 2003

of the original ‘0’, ‘1’, ‘2’,… . Save the file, run maketest.bat, resolve any
errors, and then run test.exe to verify your change.

d) Now edit the test.c program once again so that the randomly located numbers
are displayed in white (DISP_FGND_WHITE) on a blue background
(DISP_BGND_BLUE) instead of the original black on light gray (see the function
Task() in test.c). Save the file, again run maketest.bat, and run
test.exe to verify the behavior.

→ Demonstrate your “white letters with blue background” version for the instructor.

Exercise #2: Alter the Random Positions
Observe the code to locate the random position algorithm and the way in which each
instance of Task() knows which character to print.

Now alter the Task() function so that the first instance of Task() selects a random
horizontal position, but only uses the top line of the display, the second instance selects a
random position only on the second line of the display, and so forth.

It is not necessary to demonstrate this exercise for the instructor, but use this version for
the following exercises.

Exercise #3: Add a New Task
Create a new task function, myTask(), that will run concurrently with the existing
tasks. Use OSTaskCreate() to start your new task inside the existing
TaskStartCreateTasks() function, and be sure to allocate stack space and assign
a unique task priority number.

The myTask() function you create must “erase” one column of the display (write a
column of blank characters), then delay for 10 OS clock ticks, then erase the next
column, and so forth, modulo 80 columns.

→ Demonstrate your program now including the myTask() function. Be able to
explain the number of tasks displayed in the status area of the screen.

Exercise #4: Create a Screen Clear Semaphore Interlock
You now need to alter the test.c program with a pair of semaphores that control
clearing the screen when the space bar is pressed.

a) First, modify your myTask() function so that it clears the entire display area (all
80 columns).

b) Next, figure out how to detect a press of the ‘space bar’ key inside the
TaskStart() function.

c) Declare two new global semaphore pointers, OS_EVENT *KeySem and
*ClearSem, and create both semaphores in main() using OSSemCreate().

 2

EE475 Lab #8 Fall 2003

d) Devise the proper sequence of OSSemPend() and OSSemPost() calls so that
the following interlock is achieved:

In TaskStart() In myTask()
Acquire KeySem
Start other tasks

Start of loop: Start of loop:
Acquire ClearSem
Acquire KeySem

If space bar pressed:
Relinquish KeySem
Acquire ClearSem

…clear the display area…
Relinquish ClearSem

Acquire KeySem Relinquish KeySem

Relinquish ClearSem
Endif

Endloop

Endloop

→ Demonstrate your program for the instructor. For your report, comment on the
semaphore interlock: is a deadlock possible with this arrangement?

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, explain what was
done, how it was accomplished, and answer the given questions to demonstrate your
understanding of the exercise. Include commented file excerpts related to each exercise,
and the signed instructor verification sheet.

→ The lab report is due at class time in two weeks.

 3

Instructor Verification Sheet
Lab #8 Fall 2003

Student Name:

 Instructor Signature Date
#1 White letters on blue
background modification

#3 New task to clear
columns sequentially

#4 Space bar interlock

	Preliminaries
	Exercise #1: Build the Example C Project
	Exercise #2: Alter the Random Positions
	Exercise #3: Add a New Task
	Exercise #4: Create a Screen Clear Semaphore Interlock
	Endif
	Endloop

	Lab Report
	Instructor Verification Sheet

