
EE477 Digital Signal Processing
Laboratory Exercise #13
Real time FIR filtering Spring 2004

The object of this lab is to implement a C language FIR filter on the SHARC evaluation
board. We will filter a signal from the computer output and from a random noise
generator. The filtered signal will be measured to determine the filter's frequency
response.

Board Set Up
SHARC evaluation board on gray PVC box. Note: The signal flow chart for the board
is on the class web site.

1. Plug in the box and turn it on. (The LED's for Flags 2 & 3 should start blinking).
2. Plug the audio output (“audio to computer”) miniplug into the line-level audio

input jack on the computer sound card (blue colored jack). Double-click the
“speaker” icon in the Windows tray and select the line-in source using the
recording panel, and unmute line-in using the playback panel. Adjust the speaker
volume and you should hear a pizzicato rendition of Mancini’s “Theme from
Peter Gunn.”

3. Plug the serial cable between the SHARC evaluation board and the computer's
serial port #1 (com1). Make sure the port switch box is set to the proper cable (A
or B).

4. Launch the VisualDSP++ program. If the software is configured to use the
evaluation board, a window will pop up saying “Hit the reset button” for the
evaluation board. If the window does not pop up, go into the Sessions menu and
switch to the session (or create a new session) for the EZ-KIT 21061 and the
21061 hardware.

MATLAB Setup:
1. Open Matlab
2. Run the data acquisition demo: demoai_fft.
3. You should see a display of the waveform as well as the spectrum.

Programming Setup:
1. Create the folder c:\EEclasses\EE477\LAB13
2. Copy the files lab13.c, lab13.ldf, and 061__ezkit_hdr.asm from

the course web site http://www.coe.montana.edu/ee/rmaher/ee477/notes.htm to
this directory.

3. Create a new VisualDSP++ project called lab13. The project file should also be
kept in your LAB13 directory.

 1

http://www.coe.montana.edu/ee/rmaher/ee477/notes.htm

4. Under Project->options select:
a. Processor : ADSP-21061
b. Type : DSP executable
c. When it asks to add support for the VisualDSP++ kernel select NO.
d. Add source file : 061__ezkit_hdr.asm
e. Add source file : lab13.c
f. Add linker file: lab13.ldf
g. You will also need to add a header file named fir.h that will be created

below.

5. You should already have a session for the evaluation board. If not, create a new
session: Session->New session->EZ-KIT 21061.

Examine the C program file lab13.c . The main() routine is at the end of the file,
around line 291. It calls several initialization routines and then goes into an idle (do
nothing) loop.

The processing happens in an interrupt routine, spr0_asserted(), around line
number 125. This routine is called once for each stereo input sample pair. Note that the
original function just copies the left input sample to both the left and right output
samples. You will later need to insert instructions to compute the FIR filter.

Build and run the pass-through program:
From the VisualDSP workspace, select “rebuild all” to compile and link the programs.
The system will automatically download the executable code to the EVB and run to a
breakpoint in the main() function. Now press the “run” button. The second LED
should start flashing and VDSP++ should flash “running” in the status bar.

Adjust the switches so that the noise generator is connected to the DSP input and the
board output is sent to the computer. Do you hear the sound?

Now launch Matlab and run the display program demoai_fft . The Matlab window
should show the input signal and the spectrum. Make note of the signal amplitude.

Observe the Matlab display for both white noise and pink noise. How do they differ?
Also observe the DSP input and the DSP output (output switch). Can you see the effects
of the sampling and reconstruction processes?

To stop the program use the VDSP++ software reset button. Never press the hardware
reset button, unless the software instructs you to press it. The reset process takes about
15 seconds, after which you will get control of VDSP++ again.

Edit the lab13.c program so that the output is caused to be 0.1 times the input. All you
need to do is edit the line that copies the filter input to the filter output. Save and rebuild
the program, run it, and observe the output. Is it 1/10th as big as before?
[Instructor Verification]

 2

Finally, re-edit the program so that it just passes the signal again. Soft reset, build, and
run the program to verify that it is once again just passing the signal unaltered.

Filter Design:
Using Matlab, design a bandpass filter using the fir1() function from the signal
processing toolbox. Design a 10-tap bandpass filter centered at 10kHz (the hardware
sampling frequency is set to 48kHz). Note what order fir1 requires in order to get 10
taps. Choose your own cut-off or "edge" frequencies and record them for your lab report.

Use [H,W]=freqz(…) to generate a linear plot of magnitude vs. frequency for the
filter you designed. You will need to include this theoretical plot (with labels) in your
report, as described below.

You will need to copy the filter coefficients produced by Matlab into a file named
fir.h, where the coefficients form a single column and are comma delimited. These
coefficients will then be used in your C program (see the #include fir.h line). You
can dump the coefficients from Matlab by using the following Matlab code:

fid = fopen('c:\eeclasses\ee477\lab13\fir.h','wt'); %'wt' means write text-format file
fprintf(fid,'%0.18f,\n',b); % vector b contains the filter coefs
fclose(fid); %close the file

You could also cut-and-paste from Matlab and a text editor using:
fprintf(1,'%0.18f,\n',b); % fid=1 means standard output (the screen)

Programming:
1. Make sure header file fir.h is identified in the project file group.
2. If necessary, edit the line near the beginning of lab13.c to change NUM_TAPS

to the number of coefficients you actually wrote to fir.h. Also make sure that
the path to fir.h is correct in the #include section.

Task 1:
Edit the program to filter the input samples using the coefficients you created in Matlab
and stored in fir.h. You need to write your own FIR filter instructions in
spr0_asserted(). Use the arrays coeffs[] and state[] for the coefficients
and the filter delay line, respectively. Keep in mind that the filter routine is called to
process one sample at a time, so you need to adjust the state[] array so that the delay
line is ready for the next call.

Note that you might be well advised to test your FIR code first with a single coefficient
set to 1.0 and all the other coefficients set to zero. This should implement a “pass
through” filter.

 3

When ready, use the bandpass filter coefficients in your program. Soft reset, build, and
run your FIR program. Does the spectrum displayed by demoai_fft resemble your
filter?

Task 2:
Measure the filter frequency response using a sequence of sinusoidal inputs. You can
attach an external signal generator and observe the output using an oscilloscope. Take
and tabulate sufficient measurements to cover the frequency range of interest—especially
in the transition bands around the bandpass region.

You should enter these measured data points via Matlab and plot the results on top of the
theoretical filter response you obtained via freqz. Consider any discrepancies and
unexpected behavior.

Note: Instead of the external function generator and scope, you can automate the
data collection process by using the data acquisition toolbox in Matlab to generate
and record signals. Connect the “signal from computer” cable to the soundcard
output (green) jack, or to the headphone jack on the front of the computer.
Modify the DAQ.m file to automatically generate tones, sending these tones
through the DSP and recording the DSP output. You can then have Matlab
compare the input and output signals automatically as you step through
frequencies. Give it a try!

Task 3:
Increasing the length of the filter would allow a more selective frequency response, but at
some point the amount of time required to compute the filter will exceed the intersample
interval. In other words, if the filter is too long, the DSP can’t finish computing the
current result before the next input sample arrives, and the processor starts missing
samples. Investigate what number of NUM_TAPS causes the filter to malfunction. How
did you tell? Use fir1 to design a maximum length filter and verify its behavior.

Lab write up:
Include your FIR filter code and a figure showing the magnitude response of the FIR
filter, both theoretical and measured. You will need to normalize the data points that you
took so they will fit on the plot. How well do your points match the filter you designed?
Explain. Comment on Tasks 1& 3 as well, including all pertinent results and
observations.

 4

EE477
Digital Signal Processing

Spring 2004

Instructor Verification
Lab #13

Demonstrate “pass” program with 0.1 gain factor

 5

	EE477 Digital Signal Processing�Laboratory Exercise #13
	Board Set Up
	MATLAB Setup:
	Programming Setup:

	Build and run the pass-through program:
	Filter Design:
	Programming:
	Task 1:
	Task 2:
	Task 3:

	Lab write up:

