2 TUTORIAL

This chapter contains the following topics.
e “Overview” on page 2-1
* “Exercise One: Building and Running a C Program” on page 2-3

* “Exercise Two: Calling an Assembly Routine and Creating an
LDEF” on page 2-16

* “Exercise Three: Plotting Data” on page 2-34
* “Exercise Four: Linear Profiling” on page 2-46

* “Exercise Five: Installing and Using a VCSE Component” on
page 2-54

Overview

This tutorial demonstrates some of the key features and capabilities of the
Visual DSP++ Integrated Development and Debugging Environment
(IDDE). The exercises use sample programs written in C, C++, and
assembly for ADSP-21xxx DSPs. For these exercises, you will use the
ADSP-2106x simulator for the ADSP-21065L target.

You can use a different ADSP-21xxx processor with only minor changes to
the Linker Description File (.LDF) included with each project.

Visual DSP++ 3.0 Getting Started Guide 2-1
for SHARC DSPs

Overview

Visual DSP++ includes basic Linker Description Files for each processor
type in the 1df folder. The default installation path for this folder is:

Analog Devices\VisualDSP\21k\1df

The source files for these exercises are installed during the VisualDSP++
software installation.

The tutorial contains five exercises.

In Exercise One, you will start up VisualDSP++, build a project
containing C source code, set up a debug session, and run the
program.

In Exercise Two, you will create a new project, use Expert Linker
to create a Linker Description File for the project, modify sources
to call an assembly routine, use Expert Linker to modify the .LDF
file, and rebuild the project.

In Exercise Three, you will apply a simple convolution algorithm
to a buffer of data. You will use the Visual DSP++ plotting engine
to view the different data arrays graphically.

In Exercise Four, you will use linear profiling to examine the effi-
ciency of the convolution algorithm used in Exercise Three. Using
the collected linear profile data, you will pinpoint the most
time-consuming areas of the algorithm, which are likely to require
hand tuning in the assembly language.

In Exercise Five, you will install a VCSE component on your sys-
tem and add the component to the project. Then you will build
and run the program with the component.

2-2

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Tip: Become familiar with the VisualDSP++ toolbar buttons, shown in

Figure 2-1. They are shortcuts for menu commands such as File, Open.
Toolbar buttons and menu commands that are not available for the task
that you are performing are disabled and displayed in gray.

Do B G [& | [bk |Gb b b | & @ b o [[acbug B
Pre e Al amra | hehi| BB [E0es @
[Eelaloulululuu =l EEEEIEE LI R =0

BBl abalababarakabch

Figure 2-1. VisualDSP++ Toolbar Buttons

Exercise One: Building and Running a C
Program

In this exercise, you will:
* Start up the Visual DSP++ environment
* Open and build an existing project
* Set up the debug session and examine windows and dialog boxes
* Run the program

The sources for this exercise are in the dot_product_c folder. The default
installation path is:

Program Files\Analog Devices\VisualDSP\21k\Examples\tutorial\
dot_product_c

Visual DSP++ 3.0 Getting Started Guide 2-3
for SHARC DSPs

Exercise One: Building and Running a C Program

Step 1: Start VisualDSP++ and Open a Project

To start VisualDSP++ and open a project:

Click the Windows Start button and select Programs, Visual DSP,
and Visual DSP++ Environment.

If you are running Visual DSP++ for the first time, the New Session
dialog box (Figure 2-6 on page 2-11) opens to enable you to set up

a session.

a. Select the values shown in Table 2-1.

Table 2-1. Session Specification

Box Value

Debug Target ADSP-2106x Family Simulator
Platform ADSP-2106x Simulator

Session Name ADSP-21065L ADSP-2106x Simulator
Processor ADSP-21065L

b. Click OK. The VisualDSP++ main window appears.

If you have already run Visual DSP++ and the Reload last project
at startup option is selected on the Project page under Settings and
Preferences, Visual DSP++ opens the last project that you worked
on. To close this project, choose Close from the Project menu, and
then click No when prompted to save the project. Since you have
made no changes to the project, you do not have to save it.

. From the Project menu, choose Open.

Visual DSP++ displays the Open Project dialog box.

2-4

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

3. In the Look in box, open the Program Files\Analog Devices
folder and double-click the following subfolders in succession.

VisualDSP\21k\Examples\tutorial\dot_product_c
@ This path is based on the default installation.
4. Double-click the dotprodc project (.dpj) file.

Visual DSP++ loads the project in the Project window, as shown in
Figure 2-2.

Project: dotprodc.dpj = =|

Eln 5 dotprode:

=14 Linker Files
S dotprade. I4f
=3 Source Files

L]\ Prujectl

Figure 2-2. Project Loaded in the Project Window

The environment displays messages in the Output window as it
processes the project settings and file dependencies.

The dotprodc project comprises two C language source files, dot -
prod.c and dotprod_main.c, which define the arrays and calculate
their dot products.

Visual DSP++ 3.0 Getting Started Guide 2-5
for SHARC DSPs

Exercise One: Building and Running a C Program

5. From the Settings menu, choose Preferences to open the Prefer-
ences dialog box, shown in Figure 2-3.

Commands I k.eyboard I Toolz I Fluginz
General | Froject I Colors I E ditar I Toolbars

— eneral Preferences

IV Fun to main after load V' Load executable after buid

[™ Prompt on target halt ¥ futo-complete commands

I" | Enable pipeline dizplay ¥ Diock new windows

[T Recycle source windows ¥ Check extemal file modification
— Fants:

Element:

Courier

IDDE “window Font
Cuatput ‘window Font

Change... | Reszet |

ak. I Cancel |

Figure 2-3. Preferences Dialog Box

6. On the General page, under General Preferences, make sure that
the following options are selected.

* Run to main after load

¢ Load executable after build

2-6 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

7. Click OK to close the Preferences dialog box.

You are now ready to build the project.

Step 2: Build the dotprodc Project

To build the dotprodc project:
1. From the Project menu, choose Build Project.

Visual DSP++ first checks and updates the project dependencies
and then builds the project by using the project source files.

As the build progresses, the Output window displays status mes-
sages (error and informational) from the tools. For example, when
a tool detects invalid syntax or a missing reference, the tool reports
the error in the Output window.

If you double-click the file name in the error message, Visu-
alDSP++ opens the source file in an editor window. You can then
edit the source to correct the error, rebuild, and launch the debug
session. If the project build is up-to-date (the files, dependencies,
and options have not changed since the last project build), no build
is performed unless you run the Rebuild All command. Instead,
you see the message “Project is up to date.” If the build has no
errors, a message reports “Build completed successfully.”

Visual DSP++ 3.0 Getting Started Guide 2-7
for SHARC DSPs

Exercise One: Building and Running a C Program

In this example (Figure 2-4) notice that the compiler detects an
undefined identifier and issues the following error message in the
Output window.

=%

Dutput Windowr

-1 —g

—proc ADSP-Z106 - |
"itn"

iz undefined

cdotprod_main. o

"I ~Program Files~VisuwalDSPwcoc2lk" —c
serror: identifier

" dotprod_main.c', line 115: ce0020:
itn 1i;

1 error detected in the compilation of " “dotprod_main.c".
cc?llk: Fatal Error: Compilation failed
Tool failed with exit-ezception code:

Build was unsuccessful.

[T TP Consale Buitd /]| <] |

1.

=<

Figure 2-4. Example of Error Message

2. Double-click the error message (black) text in the Output window.

Visual DSP++ opens the C source file dotprod_main.c in an editor
window and places the cursor on the line that contains the error

(see Figure 2-5 on page 2-9).

2-8

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

The editor window in Figure 2-5 shows that the integer variable
declaration int has been misspelled as itn.

mulator] - [Project: dobprode.dpi]

File Edit Session Wiew Project Register Memory Debug Settings Tools Window Help

CHS 8¢ [[FERpiAicnTalemhh|[ne]
@@|%%%|@@ﬁ‘“dehug j| HEEEI%@*

=ES| B dotprod_main.c
E@ dotprode /¢ woid maini) Al 5 [UUBUUE] nop; -~
23 Linker Files FAASTITFATFEFEATEREFF T FAI 701777 [00BO00E] nop:
-B dotprode.Idf [008007] nop:
A Source Files woid maini) Egggggg% nop:
-E dotprod_main.c { nop!
...... 5 dotprod.c | itm i [00800A] nop: |
double result[3] = {0}: [00800E] nop:
[00800C] nop:
result[0] = a dot b{ a, b I: [00800D] nop:
result[l] = a dot_ci &, c 17 . [00B00E] nop:
|« I result[2] = a dot d(a, d 15 [00800F] nop: .
¥ Project I [l | | 3 A iI LIJ
1 error detected in the compilation of " “dotprod_main.c". ;I
cc2llk: Fatal Error: Compilation failed
Tool failed with exit-exception code: 1. _
Build was unsuccessful. _I
Jdlf A bl fs Conzole A Build ||_L|1 LI
Ready |Halted [line 115, Cal1 | [4

Figure 2-5. Output Window and Editor Window

3. In the editor window, click on itn and change it to int. Notice
that int is now color coded to signify that it is a valid C keyword.

4. Save the source file by choosing Save from the File menu.

5. Build the project again by choosing Build Project from the Project
menu. The project is now built without any errors, as reported in
the Build view in the Output window.

Now that you have built your project successfully, you can run the exam-

ple program.

VisualDSP++ 3.0 Getting Started Guide 2-9
for SHARC DSPs

Exercise One: Building and Running a C Program

Step 3: Set Up the Debug Session

In this procedure, you will:
* Set up the debug session before running the program
* View debugger windows and dialog boxes

Since you enabled Load executable after build on the General page in the
Preferences dialog box, the executable file dotprodc. dxe is automatically
downloaded to the target.

If the selected processor in the debug session does not match the project’s
build target, Visual DSP++ reports this discrepancy and asks if you want to
select another session before downloading the executable to the target. If
VisualDSP++ does not open the Session List dialog box, skip steps 1-4.

To set up the debug session:

1. In the Session List dialog box, click New Session to open the New
Session dialog box, shown in Figure 2-6 on page 2-11.

For subsequent debugging sessions, use the New Session command
on the Sessions menu to open the New Session dialog box.

2-10 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Debug target: Processor:;
ADSP-21080
ADSP-21061
: ADSP-21062
Flatform: N
| 4DSP-2108x Simulator =l

Seszion name:
I.&D SP-21065L ADSP-2106% Simulatar

k. I Cancel

Figure 2-6. New Session Dialog Box

2. Specify the target and processor information listed in Table 2-2.

Table 2-2. Session Specification

Box Value

Debug Target ADSP-2106x Family Simulator
Platform ADSP-2106x Simulator

Session Name ADSP-21065L ADSP-2106x Simulator
Processor ADSP-21065L

3. Click OK to close the New Session dialog box and return to the
Session List dialog box.

Visual DSP++ 3.0 Getting Started Guide 2-11
for SHARC DSPs

Exercise One: Building and Running a C Program

4. With the new session name highlighted, click Activate.
If you do not click Activate, the session mismatch message appears
again.

VisualDSP++ closes the Session List dialog box, automatically
loads your project’s executable file (dotprodc.dxe), and advances to
the main function of your code (see Figure 2-7).

|F Analog De 15P++ - [Targek: ADSI i imulatar] - [Project: dotprode.dpj]

File Edit Session “iew Project Register Memory Debug Settings Tools Wwindow Help

aElEE R s Ey

@@q@ﬁaw@mmhuehug] IEEEY=3=
| @ BPE 0w IR \]Jm@@m# \
Project: dotprodc.dpj ==l B dotprod_main.c :
ni" dotprodc /4 woid maini) AI [0080DC] nep; ;I
=8 El Linker Files FAEEEEIIIIFREIETIEERIRITIE101110 [00800D] nop:
i B dotprode.idf [0080DE] nop:
=t a Source Files void main() [0080DF] nop:

- dotprod_main.c { main

s D0B0ED] modify (i7,Ox
B capod el [SE
s double result[3] = (0} & [0080EL] FB=n=d0nm.
D [00B0E2] r4=0=9800;
=1 regult[0] = a dot bi a, b):| F [0080E3] r2=id;
resule[l] - a dot cf a, ¢ 7 — [00B0E4] dm(O=fEEE££E8

14 [v] result[2] = a dot d{ a, d)2 = [O0B0ES] dm{O=EEEEELED
i Projectl LI_I oA 4] | _’I_I

Loading: "C:~FProgram Files~Analog Dev1ces\V1sualDSP\21k\examples\TutDrlal\th_J
Load complete.

] £ ﬂ
A I4-\. Gonsole ﬂ Build f ||L|_| ﬂ
Ready [Halked lLine 115, clg | [4

Figure 2-7. Loading dotprodc.dxe

2-12 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

5. Look at the information in the open windows.

The Output window’s Console view contains messages about the
status of the debug session. In this case, VisualDSP++ reports that
the dotprodc.dxe load is complete.

The Disassembly window displays the machine code for the exe-
cutable. Use the scroll bars to move around the Disassembly
window.

Note that a solid red circle # and a yellow arrow 5 appear at the
start of the program labeled “main”.

The solid red circle indicates that a breakpoint is set on that
instruction, and the yellow arrow indicates that the processor is
currently halted at that instruction. When Visual DSP++ loads your
C program, it automatically sets two breakpoints, one at the begin-
ning and one at the end of code execution.

Visual DSP++ 3.0 Getting Started Guide 2-13
for SHARC DSPs

Exercise One: Building and Running a C Program

6. From the Settings menu, choose Breakpoints to view the break-
points set in your program. VisualDSP++ displays the Breakpoints
dialog box, shown in Figure 2-8.

— Breakpoint Properties
Break at: lLI
'dotprod _rmain.c” 118 Browsze... | Cancel |
Expression: Add
Skip

Breakpoint list:

Wit

at "dotprod_main.c" 118
(wlat _lib_prog_term

Delete

Hid

Delete &l

Figure 2-8. Breakpoints Dialog Box

The breakpoints are set at these C program labels:
e “dotprod_main.c” 118
e _ lib_prog_term

The Breakpoints dialog box enables you to view, add, and delete
breakpoints and to browse for symbols. In the Disassembly and
editor windows, double-clicking on a line of code toggles (adds or
deletes) breakpoints. In the editor window, however, you must
place the cursor in the gutter before double-clicking.

2-14 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Use these tool buttons to set or clear breakpoints:
ﬂl Toggles a breakpoint for the current line
80| Clears all breakpoints
7. Click OK or Cancel to exit the Breakpoints dialog box.

Step 4: Run dotprodc

To run dotprodc, click the Run button or choose Run from the
Debug menu.

Visual DSP++ computes the dot products and displays the following
results in the Console view (Figure 2-9) in the Output window.

Dot product [0] = 0.000000
Dot product [1] = 0.707107
Dot product [2] = -0.500000

Loading: "C:~Program Files“Analog Devices VisualDSP~Z1lk~ezamples~Tutoriala
Load complete.

- | =l
= |40 [P console /4 Buid 7 | EXNEI
Figure 2-9. Results of the dotprodc Program
You are now ready to begin Exercise Two.
Visual DSP++ 3.0 Getting Started Guide 2-15

for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

Exercise Two: Calling an Assembly
Routine and Creating an LDF

In Exercise One, you built and ran a C program. In this exercise, you will
modify this program to call an assembly language routine, create a Linker
Description File to link with the assembly routine, and rebuild the
project. The project files are largely identical to those of Exercise One.
Minor modifications illustrate the changes needed to call an assembly lan-
guage routine from C source code.

Step 1: Create a New Project

To create a new project:

1. From the Project menu, choose Close to close the dotprodc
project. Click Yes when prompted to close all open editor win-
dows. If you have modified your project during this session, you
are prompted to save the project. Click No.

2. From the Project menu, choose New to open the Save New
Project As dialog box, shown in Figure 2-10.

Save Mew Project As

Save in: Ia dot_praduct_c j - £ -

debug
@ dotprode. dpj

File narme: || Save I
Save as type: | Project Files [*.dpi) I Cancel |

4

Figure 2-10. Save New Project As Dialog Box

2-16 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

3. Click the up-one-level button until you locate the
dot_product_asm folder, and then double-click this folder.

4. In the File name box, type dot_product_asm, and click Save.

The Project Options dialog box (Figure 2-11) appears.

Projectopons B

Proiect | General | VIDL | Compile | Assemble | Link | Spit |«] v

— Target
Processor | ADSP-210850 =
Tupe: I D5P executable file j
Marne: Iu:lu:ut_pru:uduu:t_asm

— Tool Chain

Compiler: ID’E++ Cormpiler for SHARC [27 Dem/ 21 Twmd 21 EHj

&zzembler: I.i‘-.DSF'-21 we Farily Azzembler

Linker: I.-i‘-.DSF'-21 we Family Linker

Loader: I.-'E-.DSF'-E'I wwn Family Loader

Led Lef Led Lol

Splitter; I.-i‘-.DSF'-21 wam Family Splitker

Settings for configuration: | Debug j

] I Cancel |

Figure 2-11. Project Options Dialog Box: Project Page

This dialog box enables you to specify project build information.

VisualDSP++ 3.0 Getting Started Guide 2-17
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

5. Take a moment to examine the tabbed pages in the Project
Options window: Project, General, VIDL, Compile, Assemble,
Link, Split, Load, and Post Build. On each page, you specify the
tool options used to build the project.

6. On the Project page (Figure 2-11 on page 2-17), specify the fol-
lowing values.

Table 2-3. Completing the Project Page

Box Value

Processor ADSP-21065L
Type DSP executable file
Name dot_product_asm
Settings for configuration Debug

These settings specify information for building an executable file
for the ADSP-21065L DSP. The executable contains debug infor-

mation, SO you can examine program execution.

7. Click the Compile tab to display the Compile page, shown in
Figure 2-12 on page 2-19.

2-18 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Project Opti

F'n:niectl Generall ViDL Compile |f-‘«ssemble| Link I Load I 4 | ’l

Cateqgory: IEeneraI j
— General
[Enable optimization ¥ Generate debug informiation

™ Interprocedural Dptimization

r— Compiler Dialect
[Disable built-in functions

— &dditional Output
I~ Save temporary files

Additional options:

0k I Cancel |

Figure 2-12. Project Options Dialog Box: Compile Page

8. In the General group box, select the Generate debug information
check box, if it is not already selected, to enable debug information
for the C source.

9. Click OK to apply changes to the project options and to close the
Project Options dialog box.

@ When prompted to add support for the Visual DSP++ kernel, click

No. Once added, kernel support cannot be removed.

You are now ready to add the source files to the project.

Visual DSP++ 3.0 Getting Started Guide 2-19
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

Step 2: Add Source Files to dot_product_asm

To add the source files to the new project:

1. Click the Add File button = , or from the Project menu, choose
Add to Project and then choose File(s).

The Add Files dialog box (Figure 2-13) appears.

add Files E E
Lk, it I 5 dot_product_asm j = £ Eo-
dokprod.c
dotprod_func.asm
dotprod_main.c
File narne: || add
Files af type: I.-'l'n.II Source Files [.o, ".cpp, *.cHs, © asm, *.z, j Cancel |

S

Figure 2-13. Add Files Dialog Box: Adding Source Files to the Project

2. In the Look in box, locate the project folder, dot_product_asm.
3. In the Files of type box, select All Source Files.

4. Hold down the Ctrl key and click dotprod.c and dotprod_main.c.
Then click Add.

To display the files that you added in step 4, open the Source
Files folder in the Project window.

You are now ready to create a Linker Description File for the project.

2-20 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 3: Create a Linker Description File for the
Project

In this procedure, you will use the Expert Linker to create a Linker
Description File for the project.

To create a Linker Description File:

1. From the Tools menu, choose Expert Linker and then choose Cre-
ate LDF to open the Create LDF Wizard, shown in Figure 2-14.

Creake LDF ﬂ E |

Welcome to the Create LDF
Wizard

Thiz wizard will guide pou through the creation of a new LOF
file,

To continue, click Mest.

¢ Back I Mext » I Cancel Help

Figure 2-14. Create LDF Wizard

Visual DSP++ 3.0 Getting Started Guide 2-21
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

2. Click Next to display the Create LDF — Step 1 of 3 page, shown in
Figure 2-15.

Create LDF - Step 1 of 3

Project Information
Chooge the LDF file name and the project wpe.

LOF filename:

halog Devices\WisualD S P21 khexamples' T utanial'dot

— Project type
™ C

Tt
= Aszembly
C WisualDSFe+ kermel (VDK

< Back I Mest » I Cancel Help

Figure 2-15. Create LDF — Step 1 of 3 Page

This page enables you to assign the LDF file name (based on the
project name) and to select the Project type.

3. Accept the values selected for your project and click Next to dis-
play the Create LDF — Step 2 of 3 page, shown in Figure 2-16 on
page 2-23.

2-22 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Create LDF - Step 2 of 3 HE |
System Information
Configure the DSP gpztern by chooszing the processzors in your syztemn and the proceszor ppe.

— System type Proceszor type:

& Single processor I,&,DSP-E‘IDEEL j
i Muliprocessar

[T Set up system from debug session setiings

— Proceszor properties

Processors: Output file
Processar | I$EEIMM:&ND_LINE_DLITPLIT_FILE
PO

Executables to link against:

< Back I Mest » I Cancel Help

Figure 2-16. Create LDF — Step 2 of 3 Page

This page enables you to set the System type (defaulted to Single
processor), the Processor type (defaulted to ADSP-21065L to
match the project), and the name of the linker Output file
(defaulted to the name selected by the project).

4. Accept the default values and click Next to display the next page
(Create LDF — Step 3 of 3), shown in Figure 2-17 on page 2-24.

Visual DSP++ 3.0 Getting Started Guide 2-23
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

HE|
Wizard Completed

The Create LDF wizard now haz enough information to create
wour LOF file.

Surnmary of choices:

LDF file narme: C:%Program Fileshanalog Devices\WisualD 5P
Praoject tppe: C
System twpe: Single processor
Processar type: ADSP-21065L
Processors:
PO
Cutput file narme: $COMMAMND_LIME_OUTPUT_FILE

1| | i

Click, Finizh to cloge thiz wizard, create the new LOF file, and
vigw the LDF file with Expert Linker.

< Back I Finizh I Cancel Help

Figure 2-17. Create LDF — Step 3 of 3 Page

5. Review the Summary of choices and click Finish to create the . LDF

file.

You now have a new . LDF file in your project. The new file is in the
Linker Files folder in the Project window.

The Expert Linker window opens with a representation of the . LDF
file that you created. This file is complete for this project. Close the
Expert Linker window.

6. Click the Build Project button to build the project. The C

source file opens in an editor window, and execution halts.

2-24 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

The C version of the project is now complete. You are now ready to mod-
ify the sources to call the assembly function.

Step 4: Modify the Project Source Files
In this procedure, you will:
* Modify dotprod_main.c to call a_dot_c_asm instead of a_dot_c
* Save the modified file
To modify dotprod_main.c to call the assembly function:
1. Resize or maximize the editor window for better viewing.

2. From the Edit menu, choose Find to open the Find dialog box,
shown in Figure 2-18.

-]

Find what, |/ =] [Findext |
[~ tatch Case Direction b ark Al |

. (o p
[Reqgular expression & Down Cancel |

¥ ‘wrap around search

Figure 2-18. Find Dialog Box: Locating Occurrences of /*

Visual DSP++ 3.0 Getting Started Guide 2-25
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an

LDF

. In the Find What box, type /*, and then click Mark All

The editor bookmarks all lines containing /* and positions the cur-
sor at the first instance of /* in the extern double a_dot_c_asm
declaration.

. Select the comment characters /* and use the Ctrl+X key combina-

tion to cut the comment characters from the beginning of the
a_dot_c_asm declaration. Then move the cursor up one line and
use the Ctrl+V key combination to paste the comment characters
at the beginning of the a_dot_c declaration. Because syntax color-
ing is turned on, the code will change color as you cut and paste
the comment characters.

Repeat this step for the end-of-comment characters */ at the end of
the a_dot_c_asm declaration. The a_dot_c declaration is now fully
commented out, and the a_dot_c_asm declaration is no longer
commented.

. Press F3 to move to the next bookmark.

The editor positions the cursor on the /* in the function call to
a_dot_c_asm, which is currently commented out. Note that the
previous line is the function call to the a_dot_c routine.

. Press Ctrl+X to cut the comment characters from the beginning of

the function call to a_dot_c_asm. Then move the cursor up one
line and press Ctrl+V to paste the comment characters at the begin-
ning of the call to a_dot_c.

Repeat this step for the end-of-comment characters */. The main()
function should now be calling the a_dot_c_asm routine instead of
the a_dot_c function, previously called in Exercise One.

Figure 2-19 on page 2-27 shows the changes made in step 6.

2-26

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

[Analog Devices YisualDSP++ - [Target: ADSP-21065L ADSP-2106x% Simulator] - [Project: dot_product_asm.dpj] ... M=l E3

File Edit Session Miew Project Register Mermory Debug Settings Tools Window Help _|ﬁ||1|
DEEHS|$Y|[|[r2Roc MACHTD | 4% %% [e
1 |53 U b |8 @ 4 2 |[Debug BT
HBFE QRTMm BO G 0e @
[Project: dot_product_asm.dp) _JE A
AL EES SIS SIS SIS LIS SIS
Emmi dot_product_asm s function prototypes

Source Files TS

= :ﬁpmjc . extern double a_dot_b{ double pm %, double *)

op@ main.c <% grtern double a_dot_cof double pm *, double =*)%~
[Z3 Header Files [Jextern double a_dot_c_asmn({ double pm *, double * 3
[Z3 Linker Files extern double a_dot_di double pm *, double =)

AL LEES SIS
<4 woid maing)
AL LEES SIS

void maing)

int 1i:
double result[3] = {0}

result[0] = a_dot_b{ a. b

seresult[l] = a_dot_cf a., o)%
— result[l] = a_dot_c asm{ a. o):

result[2] = a_dot_d{ a. d 3

for{ i=0; 1i<3; i++ }

printf{ "Dot product [#d] = Xfn"., i. result[i] }:

H
irS| Projectl q | _,l_l

x| Loading: "D:“~Frogram Files\VisualDSP\2lk\Examples\TutDrial\dot_product_asm\Dehug\th_pdeuq:J
I Load complete.

]

b

=

=

5

= ks ‘:J
S | 4 | ¥ [Console 4, Build ||_L|‘ _’I
Ready [Halted |Line 121, cols | HUM v

Figure 2-19. Editor Window: Modifying dotprod_main.c to Call
a_dot_c_asm

7. From the File menu, choose Save to save the changes to the file.

8. Place the cursor in the editor window. Then, from the File menu,
choose Close to close the dotprod_main.c file.

You are now ready to modify dotprodasm.1df.

VisualDSP++ 3.0 Getting Started Guide 2-27
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

Step 5: Use the Expert Linker to modify
dot_prod_asm.ldf

In this procedure you will:

* View the Expert Linker representation of the . LDF file that you
created

* Modify the . LDF file to map in the section for the a_dot_c_asm
assembly routine

To examine and then modify dot_prod_asm.1df to link with the assembly
function:

1. Click the Add File button H .
2. Select dotprod_func.asmand click Add.

3. Try to build the project by performing one of these actions:

* Click the Build Project button

* From the Project menu, choose Build Project.

2-28 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Notice the linker error in the Output window, shown in

Figure 2-20.

[=|x

Dutput Windowr

"D:~Program Files"VisualDSPhea=nZlk exe" -proc ADSP-21065L1
"D:~Program Files*VisualDSPcc2lk" —c ~dotprod_main.c -g
"D:~Program Files"VisualDSPccZlk exe" “Debugdotprod.doj
[Warning 1i4000]

The following input =ectioni{=) that contain program code
and-or data have not been placed into the executable for
proces=or PO

asz there are no relevant command=s specified in the linker
description file.

Filename Input Section
SDebughdotprod_func.doj pn_code?

—o . ~Debughdotprod_func.doj —g _\q:J
—proc ADSP-21065L -o . ~Debug-dotp
SDebughdotprod func.doj | ~Debughdc

[Error 1i1113] The symbol '_a_dot_c_asm' referenced in file ' “Debugrdotprod_main.doj' in the

[Error 1i1113] The symbol 'pm_code?' referenced in file ' “Debug dotprod_ func.doj'’

in the prc

[Error 1i1113] The symbol '_a_dot_c_asm' referenced in file ' “Debugrdotprod_func.doj' in the

[Error 1i11113] The symbol 'dploop' referenced in file ' “Debug~dotprod func. doj'

[Exrror 111113] The symbol '_a_dot_c asm_end' referenced in file

Linker finished with 5 error{s) 1 warning(s)
cc2lk: Fatal Error: Link failed

Tool failed with exit-exception code: 1.
Build was unsuccessful.

[A B Conzole 4 Build

' sDebugtdotprod_func.doj!

in the proje

in

[RAEN

Figure 2-20. Output Window: Linker Error

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

2-29

Exercise Two: Calling an Assembly Routine and Creating an
LDF

4. In the Project window, open the Linker Files folder and dou-
ble-click the dot_prod_asm.1df file. The Expert Linker window
(Figure 2-21) opens with a representation of your file.

You might have to resize the Expert Linker window and scroll to
see both panes (Input Sections and Memory Map).

zeq_heap D000 Dwcdft
ze_stak DxdB00 DwcdfFf

Expert Linker =]

Input Sections: termary Map:

- my_asm_section Segment/Section | StartAddress | End Address |
w0 seg_dmda F-a seq_th 08000 0xB0f

w0 seqini [seq_init 0x8100 04810f

#80_pmco {3\ FE_PMCo 0«8110 OwBfef

seg_pmda {3\ zed_prida 0x9800 O 3fef

w00 sen_th -G seg_dmda Oxc000 Ocif

= @

_Plll

Figure 2-21. Expert Linker Window

The left pane contains a list of the Input Sections that are in your
project or are mapped in the . LDF file. A red X is over the icon in
front of the section named "my_asm_section" because the Expert

Linker has determined that the section is not mapped by the . LDF
file.

2-30 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

The right pane contains a graphical representation of the memory
segments that the Expert Linker defined when it created the . LDF
file. Change the view mode by right-clicking in the right pane and
choosing View Mode. Then choose Memory Map Tree to display
the tree view shown in Figure 2-21 on page 2-30.

5. Map the section my_asm_section into the memory segment named
seg_pmco as follows.

Open the my_asm_section input section by clicking on the plus
sign in front of it. The input section expands to show that the
linker macro $0BJECTS and the object file dotprod_func.doj both
have a section that has not been mapped. Drag the icon in front of
$0BJECTS to the memory map pane and onto seg_pmco. As shown
in Figure 2-22 on page 2-32, the red X should no longer appear
because the section my_asm_section has been mapped.

Visual DSP++ 3.0 Getting Started Guide 2-31
for SHARC DSPs

Exercise Two: Calling an Assembly Routine and Creating an
LDF

Expert Linker ==

|nput Sections: temary Map:

E‘] nj_l,l_arn_setin | Segment/Section | Start sddress | End Address |

- ol RSN - seg_tth 03000 D301

’ dutpmd_func.dc @ Seg_init . O=2100 O=270F

zeq_dmda [

- seq init B $EO_pmco

£8Q_pmca $0BJECTS [2eq_pmca)

- seg_pmda s $LIBRARIES [seq_pmco)

[seq tth - seg_pmda 09800 e
[+ %@ zeq dmda («cO00 Dt
[%@ zeq_heap Od000 Daddff
[G zeg_stak (wd500 O dfte

1| | » N =iro I

Figure 2-22. Dragging $OBJECTS onto seg_pmco

From the Tools menu, choose Expert Linker and Save to save the

modified file. Then close the Expert Linker window.

If you forget to save the file and then rebuild the project, Visu-
alDSP++ will see that you modified the file and will automatically
save it.

You are now ready to rebuild and run the modified project.

2-32 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 6: Rebuild and Run dot_product_asm

To run dot_product_asm:

1. Build the project by clicking the Build Project button
choosing Build Project from the Project menu.

or by

At the end of the build, the Output window displays “Build com-
pleted successfully” in the Build view. VisualDSP++ loads the
program, runs to main, and displays the Output, Disassembly, and
editor windows (shown in Figure 2-23).

[»] &nalog Devices YisualDSP++ - [Target: ADSP-21065L ADSP-2106x Simulator] - [Project: dot_product_asm.dpj] - [dotprod... [H[=] E3

File Edit Session VMiew Project Register Memory Debug Settings Tools Window Help _Iﬁ' ﬂ
DEHE $8 ||t 2o narcnTE| s34k]||nv 2|
BB |5 5t | & # 83 |[Debug SlEEE=1E)
BEES VW BT oe AEO
< woid maing) -
Elﬁﬁ dot_product_asm LIS LSS SIS SIS SIS ain =
=23 Source Files [002184] modify (i7, 0=fff
=] dotprod.c woid main() [008185] r2=i5;
dotprod_func. asm int i [gggig?] éﬁ(gsfééifffg'ls
: ;
dotprod_main.c =11l double result[3] = {0%;] = [Th __er:
D [008188] i5=i6;
[Header Files . .
23 Linker Files result[0] = a_dot_b{ a. b): F [008189] mDEllfy (i5. 0=fff
B dotpreduct_asmd s#result[l] = a_dot_cf a, o)%/ [00818A4] ri=dn(id.mb};
= = result[l] = a_dot_c_asn{ a. o): [00818B] dm{i5. mbj=rl:
result[2] = a_dot_d{ a. d): [00818C] r2=dm{id.mé); [
. ! [008180] dm{i5 mB)=r2;
for{ i1=0; 1<3; i++) [00818E] rl=dm{id . mb};
. " . _ o P 00818F] dm{i5 . m6)=rl;
tf('Dot product [%d] = Xfsn'. i. [
printf("Dot produst [%d] et [008190] r8=Dxc008:
T [008191] r4=0=9800;
[008192] ejump a_dot_hidE

L]\ Project I 4 |

[006193]
[008194]
[008195]

dnfi? ., mn?)=r2:

dn{i?.n?)=pc;

dni0zfifffffa,ib
-

| 3 1| | 3

x| Loading: "D:“FProgram Files“Vi=sualDSP-21k“Ezanples~Tutorial-dot_product_asn~Debug dot_product_asm. dxtd
I Load complete

8

b-|

=

2

5

g 3 =l
= [A[ATR T consote £ Buid L] i
Ready [Halted [[MUM 4

Figure 2-23. dot_product_asm Successfully Built and Loaded

VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs

2-33

Exercise Three: Plotting Data

2. Click the Run button to run dot_product_asm.

The program calculates the three dot products and displays the
results in the Console view in the Output window. When the pro-
gram stops running, the message “Halted” appears in the status bar
at the bottom of the window. The results, shown below, are identi-
cal to the results obtained in Exercise One.

Dot product [0] = 0.000000
Dot product [1] = 0.707107
Dot product [2] = -0.500000

You are now ready to begin Exercise Three.

Exercise Three: Plotting Data

In this exercise, you will load and debug a pre-built program that applies a
simple convolution algorithm to a buffer of data. You will use the

Visual DSP++ plotting engine to view the different data arrays graphically,
both before and after running the program.

Step 1: Load the Convolution Program

To load the Convolution program:

1. Close the dot_product_asm project, but keep the Disassembly win-
dow and Output window (in the Console view) open.

2. From the File menu, choose Load Program or click ﬂ . The
Open a Processor Program dialog box appears.

3. Select the convolution.dxe program to load as follows.

a. Open your Analog Devices folder and double-click the

VisualDSP\21k\Examples\tutorial\convolution\Debug
subfolder.

2-34 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

b. Double-click convolution.dxe to load the program. in an
editor window.

c. Ifyou are prompted to look for convolution.cpp, click Yes
to open the Find dialog box and proceed to step d. If Visu-
alDSP++ opens an editor window, proceed to step 4 on

page 2-36.

d. Click the up-one-level button to access the convolu-
tion folder.

e. Double-click convolution.cpp to display the file in an edi-
tor window, as shown in Figure 2-24.

[»] analag LalDSP++ - [Target: AD BEL AL
File Edit Session Yiew Project Register Memory Debug Settings Tools Window Help

IREACIER:

[pEelpr|naEnea bk ||nes]

[+ 5 | Ui tia | © 9 14 % [Debug El I=E)=E3=1=
|BzEs spmm nRrRUs ARG B0 BN E

wolution.cpp !EI I 1
ﬁ [008111] rd4=0=8544d; ;I
{ [008112] cjump _ate=mit(
[008113] dm{i? . m7?)=x2;
© [Initializesinelable| Table, sizeof(Table)): | [008114] dn{i7.m?)=-pc.

[D08115]
[008116] rd4=0=c200;
[008117] cjump Initiali
[008118] dm{i? . m7)=x2; —J
[008119] dm{i?.m7?)=pc:
[008114] r12=0=168;
[00811B] r8=0=c368:
[00811C] rd4=0=c200:
[00811D] cjump Generate

o b

GeneratelnputPulse| Table, Input, sizeof(Table)) _J
GenerateInpul=seCoeffs(Table, Impulse, sizeof(Impulse))
CalculatefutputPulse| Input, sizeof(Input), Impulse, si=

exit(0)

¥
= [O00B11E] dm(i?.m7)=1v2; «

I AT | v
x| =
| Loading: "C:“Program Files“inalog Devices“VisualDSP21lk“ezamples~Tutorial“conw

L Load complete.

0 FE -

L [AT [T console £ Build Led | B
Ready |Halted lLine 46, Call | [Y

Figure 2-24. Loading the Convolution Program

VisualDSP++ 3.0 Getting Started Guide 2-35
for SHARC DSPs

Exercise Three: Plotting Data

4. Look at the source code of the Convolution program.
You can see four global data arrays:
Table
Input
OQutput
Impulse
You can also see four functions that operate on these arrays:
InitializeSineTable()
GeneratelnputPulse()
GeneratelImpulseCoeffs()
CalculateOutputPulse()

You are now ready to open a plot window.

Step 2: Open a Plot Window

To open a plot window:

1. From the View menu, choose Debug Windows and Plot. Then
choose New to open the Plot Configuration dialog box, shown in
Figure 2-25 on page 2-37.

2-36 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Flok Configuration

: [ata zets: — Plat
................................... T_'r'I:IE I Llr'IE Pll:lt j
Title: [Untitled
—Data Setting

M arne: IData Setl

kd emory; I Drata(Dbd] b emon

I— Bru:uwse...l Offzet: ID—
Add Count: |1 oo Row cu:uunt:|1 1]
Femove Stride: |1 Calurnn cnunt:lm

Mew | D ata: I it

Le

Addresz:

i

Le

— iz Selection

QU CH O

)% I Cancel Settings. ..

Figure 2-25. Plot Configuration Dialog Box

Here you will add the data sets that you want to view in a plot
window.

2. In the Plot group box, specify the following values.
* In the Type box, select Line Plot from the drop-down

menu.

In the Title box, type convolution.

Visual DSP++ 3.0 Getting Started Guide 2-37
for SHARC DSPs

Exercise Three: Plotting Data

3. Enter three data sets to plot by using the values in Table 2-4.

Table 2-4. Three Data Sets: Table, Input, and Output

Data Setting Table Input Output Description

Field Data Set Data Set Data Set

Name Table Input Output Data set

Memory Data(DM) Data(DM) Data(DM) Data memory

Memory Memory Memory

Address Table Input Output The address of this data
set is that of the Input or
Output array.
Click Browse to select the
value from the list of
loaded symbols.

Count 360 360 396 The arrays are 360 and
396 elements long.

Stride 1 1 1 The data is contiguous in
memory.

Data float float float Input and Output are
arrays of float values.

Offset 0 0 0 Use zero, the default

value.

After entering each data set, click Add to add the data set to the
Data Sets list. The Plot Configuration dialog box should now look
like the one in Figure 2-26 on page 2-39.

Visual DSP++ 3.0 Getting Started Guide

for SHARC DSPs

Tutorial

Plot Configuration

TDbalta zets: Plot

w| T able

W Input Type: |Line Plot =]
[w?] D bput

Title: In::n:nm-'n:nlutin:nn

— D ata Sefting

M arne: IData Setl

Memary: | Data(D) bMemary d
[Bows oMt
a Count: [100 Rowecount [10
Remove Swide: [T Cobmncount[1D

Mew | Diata: Iint j

Address:

i

— Az Selection

O L O el

k. Cancel Settings. ..

Figure 2-26. Plot Configuration Dialog Box with Table/Input/Output
Data Sets

Visual DSP++ 3.0 Getting Started Guide 2-39
for SHARC DSPs

Exercise Three: Plotting Data

4. Click OK to apply the changes and to open a plot window with

these data sets.

The plot window now displays the three arrays. Since, by default,
the simulator initializes memory to zero, the data sets appear as one
horizontal line, shown in Figure 2-27.

canyolution -

CoRuaintion

Line Plat f
Kl

Figure 2-27. Plot Window: Before Running the Convolution Program

To display the legend box in the plot window, right-click in the
plot window and choose Modify Settings. Then, on the General
page, select Legend in the Options group box.

The legend box is not shown in the plot windows shown in this
tutorial.

2-40 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 3: Run the Convolution Program and View the
Data

To run the Convolution program and view the data:

1. Press F10 or click the Step Over button ¥ o step over the first
line in main that calls the InitializeSine Table() function.

Stepping over each function enables you to see the data being cal-
culated in a plot window.

2. Step over the call to GenerateInputPulse() by using the Step Over
command as you did in the previous step. The plot window now
displays the data for both the Input array and the Table array.

Once you finish stepping over the function, the word “Halted”
appears in the status bar at the bottom of the screen. The plot win-
dow should now show the sine wave data in the Table array.

3. Press F5 or click the Run button to run to the end of the
program.

Visual DSP++ 3.0 Getting Started Guide 2-41
for SHARC DSPs

Exercise Three: Plotting Data

When the program halts, you see the results of the convolution
algorithm in the Output array. All three data sets are now visible in
the plot window, as shown in Figure 2-28.

conyolukion x

el 1Ll }ia]]

Line Plok
4] I3

Figure 2-28. Plot Window After Running the Convolution Program to
Completion

Next you will zoom in on a particular region of interest in the plot
window to focus in on the data.

2-42 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

4. Click the left mouse button inside the plot window and drag the
mouse to create a rectangle to zoom into. Then release the mouse

button to magnify the selected region.

Figure 2-29 shows the selected region.

cansyalukion

coainton

o 4

T B - . " |I'
y hol],
= Ty
HREEEN
o

Line Plak

Figure 2-29. Plot Window: Selecting a Region to Magnify

Figure 2-30 on page 2-44 shows the magnified results.

o

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

2-43

Exercise Three: Plotting Data

cansalution x

cowainton

oo Line Plak -
4] [3

Figure 2-30. Plot Window: Magnified Result

To return to the view before magnification, right-click in the plot
window and choose Reset Zoom from the menu. You can view
individual data points in the plot window by enabling the data cur-
sor, as explained in the next step.

5. Right-click inside the plot window and choose Data Cursor from
the popup menu. Then move through the individual data points in
the current data set by pressing and holding the Left () and Right
(—) arrow keys on the keyboard. The value of the current data
point appears in the lower-left corner of the plot window, as shown
in Figure 2-31 on page 2-45.

2-44 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

convolukion x

4

(140, 0.6427876) [Table] Zoam Line Plok f
[>

Figure 2-31. Plot Window: Using the Data Cursor Feature
To switch data sets, press the Up (1) and Down (1) arrow key.

To disable the data cursor, right-click in the plot window and
choose (de-select) Data Cursor.

To return to the previous view (before magnification), right-click
in the plot window and choose Reset Zoom from the popup menu.

You are now ready to begin Exercise Four.

Visual DSP++ 3.0 Getting Started Guide 2-45
for SHARC DSPs

Exercise Four: Linear Profiling

Exercise Four: Linear Profiling

In this exercise, you will load and debug the Convolution program from
the previous exercise. You will use linear profiling, however, to evaluate
the program’s efficiency and to determine where the application is
spending the majority of its execution time in the code.

Visual DSP++ supports two types of profiling: linear and statistical.

* You use linear profiling with a simulator. The count in the Linear
Profiling Results window is incremented every time a line of code
is executed.

* You use statistical profiling with a JTAG emulator connected to a
DSP target. The count in the Statistical Profiling Results window
is based on random sampling.

Step 1: Load the Convolution Program

To load the Convolution program:

1. Close all open windows except for the Disassembly window and
the Output window.

2. From the File menu, choose Load Program, or click il . The

Open a Processor Program dialog box appears.
3. Select the program to load as follows.

a. Open the Analog Devices folder and double-click the

VisualDSP\21k\Examples\tutorial\convolution\Debug
subfolder.

b. Double-click convolution.dxe to load and run the Convo-
lution program.

2-46 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

c. Ifyou are prompted to look for convolution.cpp, click Yes
to open the Find dialog box and proceed to step d. If Visu-
alDSP++ opens an editor window, proceed to “Step 2: Open
the Profiling Window.”

d. Click the up-one-level button to access the convolu-
tion folder.

e. Double-click convolution.cpp to display the file in an edi-
tor window.

You are now ready to set up linear profiling.

Step 2: Open the Profiling Window

To open the Linear Profiling Results window:

1. From the Tools menu, choose Linear Profiling and then choose

New Profile.
Tools
Trace g
Linear Profiling Mew Profile
Flash Programrer
.g Load Prafile, ..

Expert Linker » eyl
— R ave Prafile. ..

Concatenate Prafile, ..

lear Prafile

Figure 2-32. Setting Up Linear Profiling for the Convolution Program

The Linear Profiling Results window opens.

Visual DSP++ 3.0 Getting Started Guide 2-47
for SHARC DSPs

Exercise Four: Linear Profiling

2. For a better view of the data, use the window’s title bar to drag and

dock the window to the top of the Visual DSP++ main window, as
shown in Figure 2-33.

Hi=togram XI Ezecution Unit Xl Line. . . | Source

&
s
£
B
=
5
5

Total Samples: 0 |Elapsed Tirme: 00:00:00 |[Enabled

Figure 2-33. Linear Profiling Results Window (Empty)

The Linear Profiling Results window is initially empty. Linear
profiling will be performed when you run the convolution pro-
gram. After you run the program and collect data, this window
displays the results of the profiling session.

Since we are interested only in high level source code at this point, we
will filter out any samples that do not map directly to our source code.

2-48 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

3. Right-click in the Linear Profiling Results window and choose
Properties to display the Profile Window Properties dialog box,
shown in Figure 2-34.

Profile Window Properties |
Dizplay Filter I
¥ Ertire memory space

™ CAC++ functions

Funchion | File |

Sdd..

Hemoyve

" Memory ranges
Start Addrezs | End Address |

Sdd

Hemoyve

1l

[w. Filter PC zamples with no debug info

3

(] I Cancel |

Figure 2-34. Filtering Samples with No Debug Information

4. Select the Filter tab (shown in Figure 2-34) and then click in the Fil-
ter PC samples with no debug info check box to enable the filter.
Click OK to close the dialog box.

You are now ready to collect and examine linear profile data.

Visual DSP++ 3.0 Getting Started Guide 2-49
for SHARC DSPs

Exercise Four: Linear Profiling

Step 3: Collect and Examine the Linear Profile Data

To collect and examine the linear profile data:

1. Press F5 or click to run to the end of the program.

When the program halts, the results of the linear profile appear in
the Linear Profiling Results window.

2. Examine the results of your linear profiling session.

The Linear Profiling Results window is divided into two,
three-column panes. The left pane displays the results of the profile
data, as shown in Figure 2-35.

=] Histogram | “/ol Ezecution Unit
IE| 38.20% CalculateQutputPulse{const float*, =size_t, const float*, size t, float=)
] 3.51% GeneratelnputPulse{const float*®, float* =ize t)
| 3.06% InitializeSineTable(float*, =ize t)
0.08% GeneratelmpulseCoeffs{con=st float*, float*®, =size t)
0.03% maini)

m
=
3
g
B
o
=
Z
g
[N
3
=
3

|Total Sarmples: 106530

Figure 2-35. Linear Profiling Results of Analyzing the Performance of the
Convolution Program — Left Pane

2-50

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Double-clicking on a line in the left pane displays the correspond-
ing source code for the profile data in the right pane, as shown in
Figure 2-36.

If you are prompted to look for convolution.cpp, complete these
steps:

a. Click Yes to open the Find dialog box.

b. Click the up-one-level button to access the convolu-
tion folder.

c. Double-click convolution.cpp to display the file in an edi-
tor window.

|D:\Pr0gram Files~VisualDSPr21k~ExanplessTutorialconvolutionConvolution.cpp |:J

%| Line. .
1

0.00%

0.01%

26.02%

12.16%

101 A S LTSS TS ST
102 ~~ woid CalculateCutputPulse(const float[]. size_t. const float[]. size t. float[])
103 A A LSS TS TS
104

105 woid CalculateDutputPulse(const float Input[]. =size_ t nlnputSize,

106 const float Impulse[]. size_t nlmpulseSize.

107 float Output[])

108 {

109 for{ int i=0; i<nInputSize; i++)

110

111 for{ int j=0; j<nImpul=eSize; j++)

112

113 Output[i+3i] = Output[i+i] + (Input[i] * Impulse[j]);

114 T

115 T

116}

117

118

/

[Elapsed Time: 00:00:10 [Enabled

Figure 2-36. Linear Profiling Results of Analyzing the Performance of the
Convolution Program — Right Pane

The field values in the left pane are defined on the next page.

Visual DSP++ 3.0 Getting Started Guide 2-51
for SHARC DSPs

Exercise Four: Linear Profiling

Histogram A graphical representation of the percentage of time
spent in a particular execution unit. This percentage
is based on the total time that the program spent
running, so longer bars denote more time spent in a
particular execution unit. The Linear Profiling
Results window always sorts the data with the most
time-consuming (expensive) execution units at the

top.

% The numerical percent of the same data found in
the Histogram column. You can view this value as
an absolute number of samples by right-clicking in
the Linear Profiling Results window and by select-
ing View Sample Count from the popup menu.

Execution Unit The program location to which the samples belong.
If the instructions are inside a C function or a C++
method, the execution unit is the name of the func-
tion or method. For instructions that have no
corresponding symbolic names, such as hand-coded
assembly or source files compiled without debug-
ging information, this value is an address in the
form of PCLxxx1, where xxx is the address of the
instruction.

If the instructions are part of an assembly file, the execution unit is the
assembly file followed by the line number in parentheses.

In Figure 2-35 on page 2-50 the left pane shows that the function Calcu-
TateOutputPulse() has consumed over 38% of the total execution time.
Double-clicking one of these lines displays the source file, convolu-
tion.cpp, in the right (source) pane. The source pane displays data for
each line of executable code in the file for which linear profile data has
been collected.

2-52 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Double-clicking the line with the CalculateOutputPulse() function in
the left pane displays the linear profile data shown in Figure 2-37 in the

right pane.
‘Xl Line. .. | D:“Frogram File=>VisualDSP~Z21k~Ezample=~Tutorial“convolution~Convolution.cpp |;|

100
101 | A A A A TS
102 »» woid CalculateOutputPulse{ con=t float[]. =ize t. const float[]. =ize t. float[]
103 | A A S
104

0. 00 105 woid CalculateOutputPul=e(con=t float Input[]. =ize t nlnputSize.
106 const float Impulse[]. size_t nlmnpulseSize.
107 float Output[])
108 {

0.01% 109 for{ int 1=0; i<nInputSize; i++)
110

26.02% 111 for{ int j=0; j<nImpulseSize; j++)
112

12 .16% 113 Output[i43] = Cutput[i+3j] + {Input[i] * Impul=se[j]):
114
115 T
116 |}
117
118 -

[Elapsed Time: 00:00:10

[Enabled

Figure 2-37. Linear Profile Data for Convolution.cpp

The details of the CalculateOutputPulse() function show that 26.02% of
the time spent running the entire Convolution program is spent inside the
nested for loop, calculating the convolution.

The data suggests that you should rewrite this function in hand-tuned
assembly language to decrease the total running time of the algorithm and
improve performance.

You are now ready to begin Exercise Five.

Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

2-53

Exercise Five: Installing and Using a VCSE Component

Exercise Five: Installing and Using a
VCSE Component

In this exercise, you will complete the following tasks.
* Start up the Visual DSP++ environment and select a new session
* Open an existing project
* Install a VCSE component on your system
* Add the component to the project
e Build and run the program with the component

The sources for the exercise are in the vcse_component folder. The default
installation path is:

Program files\Analog Devices\VisualDSP\21k\Examples\tutorial\
vcse_component

2-54 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 1: Start VisualDSP++ and Open the Project

To start VisualDSP++ and open the project:

1. Click the Windows Start button and select Programs, VisualDSP,

and Visual DSP++ Environment.

The Visual DSP++ main window appears.

If you have already run Visual DSP++ and the Reload last project
at startup option is selected on the Project page under Settings and
Preferences, Visual DSP++ opens the last project that you worked
on.

To close this project, choose Close from the Project menu and
then click No when prompted to save the project. Since you have
made no changes to the project, you do not have to save it.

2. From the Sessions menu, choose New Session. The New Session
dialog box appears.

3. From the Processor list, choose the ADSP-21060 processor and
click OK.

4. From the Project menu, choose Open.

Visual DSP++ displays the Open Project dialog box.

5. In the Look in box, open the Program Files\Analog Devices
folder and double click the following sub-folders in succession.
VisualDSP\21k\Examples\tutorial\vcse_component
Note: This path is based on the default installation.

6. Double-click the useg711.dpj project file.

VisualDSP++ loads the project and displays messages in the Out-
put window as it processes the project settings.
Visual DSP++ 3.0 Getting Started Guide 2-55

for SHARC DSPs

Exercise Five: Installing and Using a VCSE Component

Note: The first time that you open projects installed from the soft-
ware kit, Visual DSP++ may detect that files, folders, or both have
moved. If you receive a “Project has been moved” message, click
OK to continue.

The useg711 project contains a single C language source file
useg711.c, which contains the code needed to create an instance of
the CULawc component and to invoke the methods of the IG711
interface.

Step 2: Install the EXAMPLES::CULawc Component

The EXAMPLES::CULawc component is distributed as part of Visu-
alDSP++ and is ready to be installed on your system.

1. From the Tools menu, select the VCSE submenu and then choose
Manage Components.

2. In the Display field, select Downloaded component package...
from the drop-down list.

The Open dialog box is displayed.

3. In the Look in box, open the Program Files\Analog Devices
folder and double-click the following subfolders in succession.

VisualDSP\21k\Examples\tutorial\lvcse_component
Note: This path is based on the default installation.
4. Double-click the examples_culawc_21K.vcp file.

Visual DSP++ opens the file, extracts the information about the
component, and shows it as a downloaded component in the Com-
ponent Manager dialog box (Figure 2-38 on page 2-57).

2-56 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Component Manager

B Es] FU [ovnloaded component package...

Sart b ITitIe j

F-Fe Componert far G717 which implements mu-aw encoding in ©

— Description:

The CULaw component provides an implementation of The
ExAMPLES 1G¥11 interface and implements the mu-law encoding as
zpecified in ITU G.711 zpecification.

[nztall... [Urirztall..

Figure 2-38. Component Manager Dialog Box — Downloaded Component

5. Click the Install... button to install the component on your sys-
tem. Once the component is installed, click OK.

Visual DSP++ 3.0 Getting Started Guide 2-57
for SHARC DSPs

Exercise Five: Installing and Using a VCSE Component

6. In the Display field, select Locally installed components from the
drop-down list, and in the Sort by field, select Title.

Select Component for G711 which implements the mu-law
encoding in C. Component Manager displays the dialog box
shown in Figure 2-39.

Component Manager

Diizplay: ILu:u:aII_I,I inztalled components j

Sort by: ITitIe j

= Component for G711 which implements mu-law encoding in C

— Dezcriphion:

The ClLaw component provides an implementation of The
ErAMPLES:IGT11 interface and implements the mu-law encoding as
zpecified in 1T G.717 zpecification.

Imatall... | Uninztall... |

Figure 2-39. Component Manager Dialog Box — Selected Component

7. Click Close to close Component Manager.

2-58 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 3: Add the Component to Your Project

To add the newly installed component to the project:

1. From the Tools menu, select the VCSE submenu and then choose

Add Component.

2. Click Component for G711 which implements the mu-law
encoding in C to select it.

If you have multiple components on your system and you are not
sure which one to add, click the expand button [+ to display the
component information, as shown in Figure 2-40.

ﬁg Component for G711 which implements mu-law encoding in C ;I
Eﬁg Compaonent for G711 which implements mu-law encoding in C
----- M ame: EXAMPLES::ClULawe

----- Company: Analog Devices Ino

----- Processor ADSP-21k

----- Wergior: 1.0.0

----- Statuz; Full Code

----- Infarmation: hittp: /A, analog. com

- [mE] Categories

=B8] Implemented Interfaces

I+l

-

Figure 2-40. Expanded View of Component Information

Make sure that Processor: ADSP-21k is listed for the component
that you are adding to your project.

Visual DSP++ 3.0 Getting Started Guide 2-59
for SHARC DSPs

Exercise Five: Installing and Using a VCSE Component

3. Click Add to indicate that you want to add the component to the

project. Component Manager displays the dialog box shown in
Figure 2-41.

Adding: EXAMPLES::ZlLawe

The following file[z] will be added to the project. Continue?

ExAMPLES CULawec. html
ExaMPLES_CULawe.dlb
ExAMPLES_CULawe_factary.h
libvese21k.dib

Lacation: IE:HPngram Filez'analog Devices\WisualDSPY21 kY ozehd DS

(] I Cancel |

Figure 2-41. Adding Files to the Project

4. Click OK to add the component files to the project.

2-60 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

Tutorial

Step 4: Build and Run the Program
To build and run the program:
1. From the Project menu, choose Build Project.

Visual DSP++ displays the message shown in Figure 2-42.

WisualDSP++

@ The project settings have changed since the last build, Would wou like to rebuild the affected files?

Yes Mo | Cancel |

Figure 2-42. Rebuilding Files Affected by Changes to Project Settings

2. Click Yes. Visual DSP++ compiles the source files and creates the
program.

3. From the Debug menu, choose Run to execute the program. The
program generates the following output.

Harness to test component code generated by
EXAMPLES_CULawc.id]

Testing EXAMPLES::I1G711
Test Completed result = MR_0OK

You have now completed this exercise and the tutorial.

Visual DSP++ 3.0 Getting Started Guide 2-61
for SHARC DSPs

Exercise Five: Installing and Using a VCSE Component

2-62 Visual DSP++ 3.0 Getting Started Guide
for SHARC DSPs

	Contents
	2 Tutorial
	Overview
	Figure 2-1. VisualDSP++ Toolbar Buttons

	Exercise One: Building and Running a C Program
	Step 1: Start VisualDSP++ and Open a Project
	Table 2-1. Session Specification �
	Figure 2-2. Project Loaded in the Project Window
	Figure 2-3. Preferences Dialog Box

	Step 2: Build the dotprodc Project
	Figure 2-4. Example of Error Message
	Figure 2-5. Output Window and Editor Window

	Step 3: Set Up the Debug Session
	Figure 2-6. New Session Dialog Box
	Table 2-2. Session Specification �
	Figure 2-7. Loading dotprodc.dxe
	Figure 2-8. Breakpoints Dialog Box

	Step 4: Run dotprodc
	Figure 2-9. Results of the dotprodc Program

	Exercise Two: Calling an Assembly Routine and Creating an LDF
	Step 1: Create a New Project
	Figure 2-10. Save New Project As Dialog Box
	Figure 2-11. Project Options Dialog Box: Project Page

	Table 2-3. Completing the Project Page
	Figure 2-12. Project Options Dialog Box: Compile Page

	Step 2: Add Source Files to dot_product_asm
	Figure 2-13. Add Files Dialog Box: Adding Source Files to the Project

	Step 3: Create a Linker Description File for the Project
	Figure 2-14. Create LDF Wizard
	Figure 2-15. Create LDF – Step 1 of 3 Page
	Figure 2-16. Create LDF – Step 2 of 3 Page
	Figure 2-17. Create LDF – Step 3 of 3 Page

	Step 4: Modify the Project Source Files
	Figure 2-18. Find Dialog Box: Locating Occurrences of /*
	Figure 2-19. Editor Window: Modifying dotprod_main.c to Call a_dot_c_asm

	Step 5: Use the Expert Linker to modify dot_prod_asm.ldf
	Figure 2-20. Output Window: Linker Error
	Figure 2-21. Expert Linker Window
	Figure 2-22. Dragging $OBJECTS onto seg_pmco

	Step 6: Rebuild and Run dot_product_asm
	Figure 2-23. dot_product_asm Successfully Built and Loaded

	Exercise Three: Plotting Data
	Step 1: Load the Convolution Program
	Figure 2-24. Loading the Convolution Program

	Step 2: Open a Plot Window
	Figure 2-25. Plot Configuration Dialog Box
	Table 2-4. Three Data Sets: Table, Input, and Output
	Figure 2-26. Plot Configuration Dialog Box with Table/Input/Output Data Sets
	Figure 2-27. Plot Window: Before Running the Convolution Program

	Step 3: Run the Convolution Program and View the Data
	Figure 2-28. Plot Window After Running the Convolution Program to Completion
	Figure 2-29. Plot Window: Selecting a Region to Magnify
	Figure 2-30. Plot Window: Magnified Result
	Figure 2-31. Plot Window: Using the Data Cursor Feature

	Exercise Four: Linear Profiling
	Step 1: Load the Convolution Program
	Step 2: Open the Profiling Window
	Figure 2-32. Setting Up Linear Profiling for the Convolution Program
	Figure 2-33. Linear Profiling Results Window (Empty)
	Figure 2-34. Filtering Samples with No Debug Information

	Step 3: Collect and Examine the Linear Profile Data
	Figure 2-35. Linear Profiling Results of Analyzing the Performance of the Convolution Program – L...
	Figure 2-36. Linear Profiling Results of Analyzing the Performance of the Convolution Program – R...
	Figure 2-37. Linear Profile Data for Convolution.cpp

	Exercise Five: Installing and Using a VCSE Component
	Step 1: Start VisualDSP++ and Open the Project
	Step 2: Install the EXAMPLES::CULawc Component
	Figure 2-38. Component Manager Dialog Box – Downloaded Component
	Figure 2-39. Component Manager Dialog Box – Selected Component

	Step 3: Add the Component to Your Project
	Figure 2-40. Expanded View of Component Information
	Figure 2-41. Adding Files to the Project

	Step 4: Build and Run the Program
	Figure 2-42. Rebuilding Files Affected by Changes to Project Settings

