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Sums of Sinusoids

•We have seen that adding two
sinusoids with the same frequency
results in another sinusoid with the
same frequency.

•Consider adding sinusoids with different
frequencies:

( ) ( )∑
=

++=
N

k
kkk tfAAtx

1
0 2cos φπ



EE 477 DSP   Spring 2007    Maher 3

Sum in Phasor Form

•Can also express sum as:

•Or via Euler:
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Positive and Negative Freqs

•Interpret sinusoidal sum as two-sided,
with pairs of rotating phasors, one
positive frequency fk and one negative
frequency -fk
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Frequency Domain
Representation

•Represent x(t) in frequency domain
using mag&phase @ f:
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Products of Sinusoids
• The sum of two sinusoids contains only those two sinusoidal

frequencies.  What about multiplying two sinusoids?
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Product (cont.)

•Note that the product can be expressed
as frequency sum and frequency
difference components.

•Or conversely, a pair of frequency
components can be expressed as a
product, as in amplitude modulation.
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Periodic Waveforms

•Periodic complicated waveforms can be
expressed as harmonic sums.

•The period of the signal is T0=1/f0.  This
is called the fundamental frequency or
fundamental period.
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Fourier Analysis

•What if we have a periodic signal and
we want to figure out the Xk values
(magnitude and phase)?
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Fourier example:  square
wave
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Square wave (cont.)

• Note:  only odd harmonics are present
• Note:  harmonics decline as 1/k
• Note:  phase from 1/j = -j implies –π/2, and

sin(θ) = cos(θ-π/2)
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Time-varying Amp and Freq

•What if we allow amplitude and
frequency to vary as functions of time?

•The instantaneous frequency is the time
derivative of the phase function ψ(t):
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Time varying (cont.)

•Instantaneous frequency is the slope of
the phase function

•Example:  constant frequency

•Example:  linearly increasing frequency
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Time Varying (cont.)

•Since amplitude and frequency vary
with time, we want to estimate short-
time spectrum.

•Concept:  perform a series of Fourier
“snap shots”for short segments of the
signal

•This is known as a short-time Fourier
transform, or a spectrogram
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An aside:  musical frequencies

• Music is often based on harmonic signals
with nice “consonant”relationships

• Western music uses an octave (factor of 2)
basis with a scale of 12 notes per octave.

• Modern music has an equal-tempered scale
such that adjacent notes have the same
frequency ratio:    r = 21/12 = 1.059463
(note m in the scale has fm = f0 * 2m/12)
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Musical Scale

A = 440 Hz = referenceC = 440(2-9/12)= 261.62 Hz

Frequency

Time

Harmonics


