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Automatic off-line classification and recognition of bird vocalizations has been a subject of interest
to ornithologists and pattern detection researchers for many years. Several new applications,
including bird vocalization classification for aircraft bird strike avoidance, will require real time
classification in the presence of noise and other disturbances. The vocalizations of many common
bird species can be represented using a sum-of-sinusoids model. An experiment using computer
software to perform peak tracking of spectral analysis data demonstrates the usefulness of the
sum-of-sinusoids model for rapid automatic recognition of isolated bird syllables. The technique
derives a set of spectral features by time-variant analysis of the recorded bird vocalizations, then
performs a calculation of the degree to which the derived parameters match a set of stored templates
that were determined from a set of reference bird vocalizations. The results of this relatively simple
technique are favorable for both clean and noisy recordings. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2345831�
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I. INTRODUCTION

Several engineering applications require real time iden-
tification of birds while in flight, foraging, or roosting. These
include systems to help avoid collisions between birds and
aircraft �Pascarelle et al., 2004�, systems to track migratory
birds in the vicinity of wind turbine generators �NWCC,
2004�, and ornithological measurements systems to help un-
derstand avian behavior and migratory patterns, particularly
at night and in unfavorable meteorological conditions.
Among the possible means to identify the bird species are
their vocalizations. Thus, there exists a need for research in
on-line acoustical bird classification systems capable of run-
ning unattended and in real time.

In recent years many off-line techniques for classifying
bird species based on recorded vocalizations have been pro-
posed and developed. The most successful techniques are
based on manual inspection and labeling of bird sound spec-
trographs by experts, but this process is tedious and depen-
dent upon the subjective judgment of the observer �Kogan
and Margoliash, 1998�. The reliability of classification can
be improved if a panel of experts is used, but this is expen-
sive, time consuming, and unsuitable for real time classifica-
tion. Nevertheless, the fact that the manual inspection of
sound spectrographs tends to yield correct judgments has
encouraged research into automatic classification using ob-
jective standards derived from expert opinions.

Several of the existing automatic off-line bird vocaliza-
tion classification techniques are based on traditional speech
recognition methods �Rabiner and Juang, 1993�. Anderson,
Dave, and Margoliash �1996� used dynamic time warping
�DTW� for automatic recognition of birdsong syllables from

continuous recordings. Their method directly compared the
spectrograms of input bird sounds with those of a set of
predefined templates representative of categories chosen by
the investigator. They applied this method to vocalizations
from two bird species recorded in a low noise environment
and achieved 97% accuracy in the syllables of stereotyped
songs and 84% accuracy in the syllables of plastic �variable
or indistinct syllable� songs. The method did not use ampli-
tude normalization, so the results may be sensitive to ampli-
tude differences. Kogan and Margoliash �1998� used DTW
and hidden Markov models �HMM� to classify bird sounds
based on the syllables extracted from continuous recordings.
Their method began by extracting linear predictive coding
�LPC� coefficients or mel-frequency cepstral coefficients
�MFCC� from a set of bird syllables and then used DTW or
HMM for recognition. This method was found to perform
well for two specific birds in a low noise environment. The
method worked less well in noisy environments or with short
duration bird vocalizations. Ito, Mori, and Iwasaki �1996�
extracted two time-varying spectral features from syllables
and used dynamic programming �DP� matching to classify
budgerigar contact calls, and found that the method per-
formed well. However, only the frequencies of the spectral
features were used, not the spectral powers, so the method
may not be appropriate for other bird sounds with different
spectral structure.

Other researchers have developed classification methods
specifically tailored to bird vocalizations. McIlraith and Card
�1997� conducted research on the recognition of songs of six
bird species. In their method the bird songs were represented
with spectral and temporal parameters of the songs. They
reduced the complexity of the search space by selecting fea-
tures exhibiting the greatest discrimination, then used a neu-
ral network for classifying the bird songs. Their method
achieved good performance but the neural classifier required
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considerable computation. Härmä �2003� proposed an alter-
native method for bird sound classification. He observed that
for many songbird vocalizations, a large class of syllables
can be approximated as brief sinusoidal pulses with time
varying amplitude and frequency. Although this model is too
simple for certain bird sounds, the system provided good
recognition results for species with tonal vocalizations. In a
subsequent study, Härmä and Somervuo �2004� classified
bird sounds into four classes based on their harmonic struc-
ture, where each harmonic component was modeled with one
time-varying sinusoid. No classification statistics were re-
ported, but they found that the signal models appropriately
represented the spectral structure of 93% of the syllables in
their database.

In summary, the existing methods are well suited to their
specific application, but they also have some limitations. The
DTW and HMM techniques did not perform well in noisy
environments or for bird sounds with short duration and vari-
able amplitude. The neural classifier required a very high
computational complexity. The use of one or two spectral
peak tracks is appealing for its simplicity and robustness to
noise. Thus, in this paper we describe a spectral pattern de-
tection method with relatively low computational complexity
�i.e., suitable for a final implementation in real time� that can
be used to classify in real time tonal bird vocalizations �har-
monic or inharmonic� in the presence of realistic background
noise levels.

The remaining sections of this paper are organized as
follows. First, we review briefly the basic structure and ter-
minology of bird vocalizations. We then describe the ratio-
nale and features of the proposed semi-automatic classifica-
tion method, including our simulation results and
interpretation, and compare the results to classification based
on conventional DTW and HMM methods. Finally, we con-
clude with a summary and several suggestions for future re-
search in this area.

II. BIRD SOUNDS

Birds are able to produce a wide variety of sounds. Air
from the lungs is forced through the bronchi to the syrinx,
which is the major source of vibratory modulation. Sound
from the syrinx passes through the resonant structures of the
trachea, larynx, mouth, and beak.

Bird vocalizations can be divided into the general cat-
egories of elements, syllables, phrases, calls, and songs
�Krebs and Kroodsma, 1980; Catchpole and Slater, 1995�.
Elements can be regarded as the elementary sonic units in
bird vocalizations. A syllable includes one or more elements
and is usually a few to a few hundred milliseconds in dura-
tion. Phrases are short groupings of syllables. Calls are gen-
erally compact sequences of phrases, while songs are long
and complex vocalizations. An example of the hierarchy is
shown in Fig. 1. The reader is cautioned to be aware that the
details of each category often show individual and geo-
graphic variations and temporal plasticity, even within a
single species �Kroodsma and Miller, 1996; Krebs and
Kroodsma, 1980�. Thus, a classification strategy consisting
of a simple tone sequence detector tuned to match a specific

example bird song is unlikely to be useful in engineering
applications due to natural variation in the song details.

Syllables can range from being nearly tonal whistles, to
harmonic sounds with a distinct fundamental frequency, to
inharmonic bursts, or even to being noise like �Nowicki,
1997; Kahrs and Avanzini, 2001; Fagerlund, 2004�. In the
case of voiced harmonic sounds, the fundamental frequency
range typically lies between 500 and 5000 Hz. The spectral
content of a harmonic sound can also vary with time as the
bird changes the shape and length of the vocal tract and
beak. Figure 2 shows examples from songs and calls from
different species, illustrating only a small variety of the com-
plex sounds birds can produce.

III. CLASSIFICATION METHOD AND EXPERIMENTAL
RATIONALE

The bird sound classification problem is similar to many
existing pattern detection and classification problems. The
classification procedure described in this paper follows the
standard design cycle of Duda et al. �2001�, as depicted in
Fig. 3.

The data collection process included the acquisition of
audio recordings using recording apparatus similar to what is
anticipated in a real time classification system. The data were
obtained in the field with a variety of ambient noise sources
such as wind, motor traffic, and aircraft.

The feature choice process was based on our examina-
tion of the spectrotemporal characteristics of the bird sounds
of interest. This examination was supplemented by a review
of prior research into bird sound recognition and our prior
experience with a variety of signal processing methods use-
ful for data extraction in speech, environmental sounds, and
music. For the purposes of classification in the presence of
background noise, we have found that subsyllable elements
are difficult to use in practice simply due to the difficulty in
extracting reliable signal parameters for such short segments.
Meanwhile, ornithologists report that higher level phrases,
calls, and songs often contain regional and individual varia-
tions that will add additional degrees of freedom to the clas-
sification problem �Krebs and Kroodsma, 1980�. This led us

FIG. 1. Descriptive hierarchy of bird vocalization. The bird vocalization can
be divided into four hierarchical levels: element, syllable, phrase, and song
�or call�. The classification experiment reported in this paper operates at the
syllable level in the hierarchy.
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to focus on syllable-level classification as the starting point
for our proposed method. Restricting the process to single
syllables allows the problem to be tractable, but a fully prac-
tical automatic classification system will need to accommo-
date the many different syllables associated with a particular
bird species. Nevertheless, the characteristic strengths and
weaknesses of our proposed classification method can be as-
sessed using a single syllable study.

We observed the patterns and trends in our bird sound
database and developed a set of discrimination parameters
including spectral frequencies, frequency differences, track
shape, spectral power, and track duration. The resulting
framework uses measurements of the principal peak tracks in
each sound syllable based on our observations and measure-
ments of the recorded sound set.

The classifier model choice and training processes �de-

scribed in the following section� consisted of selecting a rep-
resentative syllable from each desired bird species in the da-
tabase, deriving the features, or discrimination parameters,
according to the basic peak track model, and then determin-
ing an allowable discrepancy between the derived features
and the data for which a match would still be allowed.

The evaluation process, described in Sec. V, consisted of
an iterative procedure comparing the error rate of the pro-
posed classifier under a range of parameter range adjust-
ments and additive noise conditions.

IV. DESCRIPTION OF THE SPECTRAL PEAK TRACKS
METHOD

As mentioned above, spectral features have been found
to be useful for bird syllable classification. Specifically, the
use of spectral peak tracks provides a compact, distinctive,
and computationally tractable basis for classification �Härmä,
2003�. A spectral peak track is formed by segmenting the
input signal into a set of overlapping short-time frames, cal-
culating the Fourier transform magnitude for each short-time
frame, and then matching peaks from one spectral magnitude
frame to the next. If the input signal contains underlying
sinusoidal partials, the resulting spectral peaks will persist
for several successive frames. The corresponding peaks �e.g.,
peaks nearest in frequency on successive frames� are identi-
fied and linked from one frame to the next to form a con-
nected sequence, known as a peak track, indicating the am-
plitude and frequency trajectory of the underlying partial.
The vocal sounds of many birds are found to be well mod-
eled by the peak track model �Härmä and Somervuo, 2004�.

We extend the basic peak track method by including a
variable number of peak tracks, which allows tonal, har-
monic, or inharmonic combinations. We also enhance the

FIG. 2. Example time-variant spectra
of bird sounds from several bird spe-
cies. �a� Mourning dove �Zenaida
macroura�, �b� Red-tailed hawk �Bu-
teo jamaicensis�, �c� Red-winged
blackbird �Agelaius phoeniceus�, �d�
Herring gull �Larus argentatus�, �e�
Brown-headed cowbird �Molothrus
ater�, �f� Mallard �Anas platyrhyn-
chos�.

FIG. 3. Pattern classification design cycle �Duda et al., 2001�. Although
numerous pattern matching procedures have been proposed and demon-
strated, no universal system yet exists. Nonetheless, the design cycle de-
picted here is a useful common starting point for classification system de-
sign.
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robustness of the peak track method by encoding the power
and shape of the spectral peak tracks to capture the additional
characteristic behavior of each vocalization.

In the proposed method we extract a variable number of
spectral peak tracks from one syllable of the desired bird
sound. The number of peak tracks selected is determined by
the relative power of the tracks from the entire syllable. A set
of descriptive parameters is then derived from the selected
spectral peak tracks. These parameters include the frequen-
cies, frequency differences, track shape, relative powers, and
the track duration. We have found these parameters to work
well in the presence of moderate noise and competing back-
ground sounds. The method also has low computational
complexity and ease of implementation.

In the following sections we describe the three major
steps of the spectral peak tracks method: spectral peak tracks
search, feature extraction, and target and recognition.

A. Spectral peak tracks search

Step A1: The first processing step is to determine the
spectral peak tracks of the syllable. A digital recording of the
syllable with 16-bit samples and a 16 kHz sample rate is first
high pass filtered with a 100 Hz cutoff in order to remove the
low frequency background noise attributable to wind or me-
chanical sounds. The filtered signal is then segmented into
Hamming windowed 256-sample frames with 128-sample
overlap �8 ms frame hop�. This is a reasonable frame rate
based on the expected spacing of the spectral peaks. The raw
spectral representation �i.e., the short-time discrete Fourier
transform� is obtained with a Fast Fourier Transform �FFT�
algorithm.

15 frames �120 ms� of the sample recording from the
time interval prior to the start of the vocalization are used to
estimate the background noise level. The average noise level
for the 15 frames is calculated and used to set the amplitude
threshold for the subsequent peak track detection. The esti-
mated background noise level is also used to clarify the onset
and release boundary of the syllable, and to distinguish the
temporal boundaries of syllables with two or more parts. A
simple energy-based detection algorithm is used to identify
syllables with more than one part. If more than one part is
found, only the part with the largest energy is retained, but
the multipart detection is noted for use during the matching
and recognition process.

Step A2: Next, the spectral peak tracks are derived us-
ing the McAulay and Quatieri �MQ� procedure �McAulay
and Quatieri, 1986; Smith and Serra, 1987; Ellis, 2003�. We
refer to this step as the coarse search. In each frame the
magnitude of the FFT data is examined to locate peaks in the
spectrum. A peak is identified by three adjacent spectral
magnitude coefficients within a frame where the middle co-
efficient is larger than both its higher and lower frequency
neighboring coefficients, and the magnitude also exceeds the
noise threshold determined in Step A1. This is done to re-
move peaks with very weak magnitude that are likely to be
caused by background noise or by sidelobes of the Hamming
window spectrum. We use a quadratic fit for the three spec-
tral coefficients defining the peak in order to refine the fre-

quency and magnitude estimate for the peak �Smith and
Serra, 1987�.

The refined peaks in one frame are compared to the
peaks in the subsequent frame, and those spectral peaks that
match well from one frame to the next are connected to form
candidate peak tracks. A good peak-to-peak match is deter-
mined by locating a peak in the subsequent frame that is
closest in frequency to each peak in the current frame. Ac-
ceptable matches are also restricted by a maximum rate of
change in frequency corresponding to the most rapid fre-
quency sweep found in actual bird syllables. We have found
that a 200 Hz range works well for spectral peaks with fre-
quencies above 2 kHz, while a 100 Hz range is used as the
allowable frequency difference for peaks below 2 kHz. In
some cases there will not be a suitable matching peak in the
subsequent frame, while in other cases there may be several
possible matches. Any conflicts are resolved by finding the
match that minimizes the frequency and magnitude differ-
ence between the tentatively matched peaks. If no good
match is found, we assume that the current peak is not con-
tinuous with any of the existing peak tracks, and the peak
track associated with that peak is marked as “dead.” Simi-
larly, if a peak in the subsequent frame is not found to be a
match for any of the peaks in the current frame, the new peak
is considered as the “birth” of a new peak track. Thus, the
coarse search process continues for each frame of spectral
data, creating sets of candidate peak tracks.

Step A3: The spectral peak tracks produced by the
coarse search in Step A2 may be discontinuous, too short, or
otherwise inconsistent and poorly constructed. Therefore, a
fine search is conducted to seek a higher level of structure in
the syllable peak track data. We first identify any brief gaps
�three or fewer frames� in the candidate peak tracks and re-
connect across the gap under the assumption that the gap is
due to noise or thresholding. Next, we prune away tracks that
are inconsistent with the expected fundamental frequency
range of the bird vocalization, such as tracks below 500 Hz.
We then eliminate any closely spaced tracks, keeping the
track with the larger magnitude, again under the assumption
that the weaker track is due to spurious noise. Finally, we
calculate the mean or median frequency, track length, and
track power for every peak track and store the results of the
fine search in the track analysis database.

Step A4: If the track list derived for the syllable has
only one spectral peak track, the peak track search is termi-
nated. If the track list includes two or more tracks, a second
fine search is conducted. First, any relatively weak peak
tracks are eliminated from the track list, thereby retaining
only the tracks with the greatest signal to noise ratio. These
strong peak tracks are sorted according to power and dura-
tion. If any of the strong peak tracks are found to be much
shorter or longer in duration than the strongest peak track, or
if the onset or offset of one of the weaker tracks is consid-
erably different from the strongest peak track, those marginal
tracks are eliminated from the track list. The resulting list of
primary peak tracks �usually eight or fewer tracks� is re-
tained for use in the matching procedure.

An example of the primary peak tracks for a harmonic
syllable is shown in Fig. 4. The syllable has five spectral
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peak tracks. Among these tracks, Track D is the most signifi-
cant, Track B is the next most significant, followed by Track
C, Track A, and finally Track E. Since Tracks A and E are
sufficiently weak to be immersed in the background noise,
they are not retained in the search phase. Consequently, only
Tracks D, B, and C are selected in the spectral peak tracks
search phase.

B. Feature extraction

Once the primary spectral peak tracks are determined,
we analyze the track contours to obtain a set of descriptive
parameters. The parameters include the frequencies, the fre-
quency differences, the relative power, the shape, and the
duration of the spectral peak tracks. These parameters were
selected based on several key insights. First, the peak track
frequencies are observed to be distinctive for many of the
bird species in our recorded database, and are therefore con-
sidered useful for pattern classification �see the example in
Fig. 5�. Second, we recognize that there are different bird
species with syllables in overlapping spectral ranges, mean-
ing that calculating only the mean frequency will be insuffi-

cient to distinguish between the species. In some cases the
presence of several peak tracks with specific frequency rela-
tionships can be a key discriminator between species, while
in other cases the shape and trend of the peak tracks may be
the most important distinguishing feature. Finally, it may be
that two different syllables are otherwise similar in frequency
range, track frequency spacing, and track shape. In these
cases we have found that comparisons between the relative
power and the total duration of the tracks are necessary to
obtain a reliable discrimination between the species.

For each primary track we first calculate the frequency
at the start, end, midpoint, first quartile and third quartile
point, which are F1, F2, F3, F4, and F5 respectively. Next, we
calculate the difference between the mean frequencies of the
three primary tracks, which we denote as FD1 and FD2. Note
that if there is only one primary track in the syllable, both
FD1 and FD2 will be set to the mean frequency of the track,
while if there are only two tracks in the syllable, both FD1

and FD2 will be set to the difference between the mean fre-
quencies of these two tracks.

Next, a simple calculation is performed to describe the
shape of each track. The shape is described by three param-
eters, S1, S2, and S3. The first parameter, S1, is expressed as

S1 =
F3 − F1

Frame _ Num _ 1
, �1�

where F1 is the starting frequency, F3 is the midpoint fre-
quency, and Frame_Num_1 is the number of frames be-

FIG. 4. Result of the spectral peak tracks search. �a� Frequency versus time
representation �spectrogram� of one syllable of a red-tailed hawk �Buteo
jamaicensis�, �b� Spectrogram showing the search results from the spectral
peak track method, �c� A three-dimensional representation of the spectro-
gram �amplitude versus frequency versus time�.

FIG. 5. Frequency range and shape example. �a� Peak track representation
of a syllable from bird species I, �b� Peak track representation of a syllable
from bird species II. The classification algorithm compares both the range
�frequency extent� and the shape of the spectral peak tracks to improve the
reliability of the syllable classification.
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tween the start point and the middle point of the peak
track. Similarly, the second parameter, S2, is expressed as

S2 =
F3 − F2

Frame _ Num _ 2
, �2�

where F2 is the ending frequency and Frame_Num_2 is the
number of frames between the endpoint and the middle
point of the peak track. The third parameter, S3, is the
standard deviation of the frequency of the track calculated
over the entire duration.

Finally, we also calculate the relative power of each
track by determining the fraction of the total power in each
frame due to the current track’s peak, then averaging these
power fractions over the length of the track.

The 12 parameters derived for each peak track have dif-
ferent units and magnitudes. Therefore, the parameters are
normalized so that the parameter vector can be used in a
distance calculation for classification. Of course, any number
of mathematical functions could be invented for the distance
calculation. We have developed a set of empirical coeffi-
cients that balance the variation of each dimension: scaling
the frequency and frequency difference parameters by 62.5,
scaling the shape parameters by 1.6, scaling the power by 2,
and scaling the duration by 125 frames provides this balance.

The final step for feature extraction is to collect the de-
rived parameters into a data structure ready for the subse-
quent matching process. Table I shows the output parameter
summary.

C. Target and recognition

The target phase is conducted with representative vocal-
izations for each bird species to be tested. The representative
vocalizations are intended to represent the desired syllable in
the best possible manner, so the selection is conducted manu-
ally. The spectral peak tracks and features are extracted for
each representative vocalization, creating a template for each
bird syllable in the test set. These syllable templates then
become the target database for the matching process, as de-
scribed next.

The recognition phase begins with a recorded segment
of an unknown bird sound. In our study the sound is assumed
to be edited manually to contain a suitable segment for the
matching process.

Step C1: Determine the number of syllable parts and
peak tracks and store them in the output parameter list for the
unknown sound.

Step C2: Calculate the frequency distance and the num-
ber of syllable parts match between the unknown sound and
each template in the target database. The first five parameters
�frequencies F1 through F5� are used in this step because in
our experience the frequency information has been found to
be the most important parameter of the matching process.
The strongest peak track from the template is compared to
each peak track in the test sound since the strongest peak
track may differ from one example to the next even within
the same species. If the number of syllable parts in the test
sound differs from the number of parts in a template, the
frequency distance is increased as a “penalty” to account for
the lower likelihood of a match.

Step C3: (a) If the minimum distance between the un-
known sound and at least one of the target templates is less
than an empirically determined threshold �e.g., 8 Hz, or ap-
proximately 1% of the typical fundamental frequency com-
ponent�, we assert that a match has been found and the tem-
plate with the minimum distance from the unknown sound is
deemed to be the recognition result. Note that this small
difference is unlikely, considering the noise and level differ-
ences inherent in real signals. Otherwise, the potential target
matches are sorted and the two templates with the smallest
distances from the unknown sound are identified for further
comparison.

(b) Conversely, if the frequency distance between the
unknown sound and one of the target templates is large, e.g.,
the mean frequency difference is greater than 800 Hz, the
target template is classified as a very poor match to the un-
known sound, and the recognition process proceeds with the
next potential match.

(c) If the number of peak tracks in the unknown sound
differs substantially �e.g., a difference greater than four� from
the target template, the target is considered a poor match and
the recognition process moves onto the next target template.
For example, if the unknown sound is nearly a pure tone
with a single peak track while a target template contains
seven peak tracks, we assume the unknown sound cannot be
the same bird species as the template.

Step C4: If the process has identified several candidate
target templates based on the frequency distance calcula-
tions, now all 12 parameters are used to calculate the total
weighted distance between the unknown sound and the can-
didate templates. We have found that better matching results
are obtained if a penalty is included for mismatched tracks:
10% multiplied by the absolute track count difference be-
tween the unknown sound and the target template is added to
the distance calculation.

The target template with the minimum distance is
deemed the best match to the unknown sound.

TABLE I. Output parameters for bird syllables. The first column represents
the number of syllable parts and peak tracks. The second column represents
the twelve parameters for each peak track.

Overall description For each track

Number of parts in the syllable Starting frequency �F1�
Number of peak tracks Ending frequency �F2�

Middle frequency �F3�
1st quartile frequency �F4�
3rd quartile frequency �F5�
Frequency difference �FD1�
Frequency difference �FD2�

Shape �S1�
Shape �S2�

Standard deviation �S3�
Relative power

Duration
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V. SIMULATION AND DISCUSSION

The original raw simulation database of bird vocaliza-
tions contained sounds with varying formats and signal in-
tegrity. Some of the sounds came from recordings in the
vicinity of an airport and therefore contain substantial back-
ground noise, while other sounds came from archival records
with extremely low noise. The original sample rates ranged
from 8 to 24 kHz, and both mono and stereo recordings were
part of the raw database.

To facilitate the simulation all recordings were con-
verted to monophonic, 16 kHz sample rate, and 16 bits per
sample. For the purposes of verifying the performance of the
peak track algorithm, recordings containing multiple syl-
lables were manually edited to isolate a single syllable with a
gap at the head and tail of the syllable. The rationale for this
editing step was that if the algorithm failed under these op-
timal conditions it would not make sense to treat the continu-
ous syllable case, nor the real time parameter extraction pro-
cess.

A. Test database

Twelve bird species were part of the test database. Each
bird species had 20 sound files, including similar syllables
from separate raw recordings. The species included Mallard
�Anas platyrhynchos�, American Crow �Corvus brachyrhyn-
chos�, Canada Goose �Branta canadensis�, Baltimore Oriole
�Icterus galbula�, Common Nighthawk �Chordeiles minor�,
Killdeer �Charadrius vociferous�, Osprey �Pandion halia-
etus�, Northern Cardinal �Cardinalis cardinalis�, Blue Jay
�Cyanocitta cristata�, Great Horned Owl �Bubo virginianus�,
Trumpeter Swan �Cygnus buccinator�, and Herring Gull
�Larus argentatus�. These bird species are common in North
America and relevant to the aviation and wind turbine bird
strike avoidance problem. With the exception of the Mallard
syllables, all the sounds contained strong tonal components
that are well matched to the spectral peak track model. De-
spite the lack of predominantly tonal components in the Mal-
lard examples, the method still achieved satisfactory results
on the database, as described below.

As an additional assessment measure, we augmented the
database with 16 synthesized syllables: 5 single tones �or
chirps�, 5 harmonic sounds, 5 inharmonic sounds, and 1 two-
part syllable. The augmented database elements, or distract-
ers, are deterministically generated and therefore provide a
means to determine the sensitivity of the matching proce-
dure. Thus, the total database contained 28 different syllable
sets, designated Category 0 through Category 27, with 20
syllable recordings in each set. The bird species category
designations are shown in Table II.

In this study, we first evaluated the database with two
conventional classification methods used in speech recogni-
tion �Rabiner and Juang, 1993�, then with the peak track
method described in this paper.

B. Classification by DTW and HMM

The first conventional classification system was based
on linear prediction cepstral coefficients �LPCC� and dy-
namic time warping �DTW� methods �Rabiner et al., 1978�.

The second conventional system was based on mel-
frequency cepstral coefficients �MFCC� and hidden Markov
models �HMM� �Rabiner, 1989�.

The conventional classifiers have been successful for
speech recognition because both the linear prediction model
and the cepstral model are well suited to the human speech
production mechanism. Specifically, the speech spectrum is
characterized by a harmonic sequence attributable to the
glottis excitation �vocal fold vibrations� and a set of rela-
tively broad resonances �formants� due to the vocal tract. As
mentioned in Sec. II, bird vocalizations are similarly pro-
duced by an excitation source that is spectrally shaped by
resonances of the trachea, larynx, mouth, and beak. How-
ever, the differences in the excitation signal and the generally
smaller dimensions of the bird vocal structure compared to
the human speech production system result in more widely
spaced spectral partials and more narrowly spaced reso-
nances in typical bird sounds compared to human speech
patterns. Thus, a conventional speech recognition technique
will not necessarily work well with bird sounds, and this
concern is borne out in the following test results.

TABLE II. Bird species category designations. Category 0 through 11 are
natural bird species. Category 12 through 27 are synthetic test signals with
deterministic parameters.

Category Description

0 Mallard �Anas platyrhynchos�
1 American Crow �Corvus brachyrhynchos�
2 Canada Goose �Branta canadensis�
3 Baltimore Oriole �Icterus galbula�
4 Common Nighthawk �Chordeiles minor�
5 Killdeer �Charadrius vociferous�
6 Osprey �Pandion haliaetus�
7 Northern Cardinal �Cardinalis cardinalis�
8 Blue Jay �Cyanocitta cristata�
9 Great Horned Owl �Bubo virginianus�
10 Trumpeter Swan �Cygnus buccinator�
11 Herring Gull �Larus argentatus�
12 Single chirp. Frequency linearly increases.
13 Single chirp. Frequency linearly decreases.
14 Single chirp. Frequency linearly increases and then

decreases.
15 Single chirp. Frequency linearly decreases and then

increases
16 Single tone.
17 Harmonic chirp. Frequency linearly increases.
18 Harmonic chirp. Frequency linearly decreases.
19 Harmonic chirp. Frequency linearly increases and then

decreases.
20 Harmonic chirp. Frequency linearly decreases and then

increases
21 Harmonic tone.
22 Inharmonic chirp. Frequency linearly increases.
23 Inharmonic chirp. Frequency linearly decreases.
24 Inharmonic chirp. Frequency linearly increases and then

decreases.
25 Inharmonic chirp. Frequency linearly decreases and then

increases
26 Inharmonic tone.
27 One syllable has two parts: inharmonic tone plus

inharmonic chirp.
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1. Description of the classification system based
on LPCC and DTW

Bird vocalization is a time-dependent process. Two simi-
lar bird syllables may have a different duration because these
syllables may be pronounced at different rates. Conse-
quently, a straightforward method that compares the value of
the first syllable at time t to that of the second bird syllable at
the same relative time may not correctly classify a given
syllable. Instead, an algorithm must be used to search the
space of mappings from the time sequence of the first bird
syllable to that of the second bird syllable. Dynamic time
warping is a standard technique used to perform time align-
ment of two syllables with different duration �Vintsyuk,
1971�.

In order for the DTW technique to be tested for bird
syllable classification, a reference template must first be cho-
sen and stored for every bird species. The classification pro-
cess entails matching the incoming bird syllable with the
stored templates. The templates and the incoming bird syl-
lable are represented as a sequence of parameter vectors and
the best matching template is the one that exhibits the mini-
mum path aligning the input bird syllable to the template.
The search space for the DTW method is constrained in such
a way that the mapping function between the time axis of the
input signal and the time axis of the template must be mono-
tonically increasing with time so that the ordering of events
in both the input and the template are preserved. The global
distance score for a mapping path is simply the sum of local
distances that make up the path.

The first preprocessing step in using DTW is the cre-
ation of bird syllable templates to be identified from the in-
put bird syllable. In the current study, templates were se-
lected manually to achieve the best recognition results. The
second preprocessing step is to extract feature vectors for the
templates and the input bird syllable. In this step, a digital
recording of the syllable with 16-bit samples and a 16 kHz
sample rate is first high pass filtered with a 100 Hz cutoff in
order to remove the low frequency background noise attrib-
utable to wind or mechanical sounds. The filtered signal is
then segmented into Hamming windowed 320-sample
�20 ms� frames with 160-sample overlap �10 ms frame hop�.
The energy-based detection method mentioned in Sec. IV is
used to detect the onset and offset of the sound signal. The
frames between the onset and offset are transformed into the
feature vectors on a frame-by-frame basis. Thirteen LPC co-
efficients �a1 a2 . . .aP� �P=13� are calculated using Durbin’s
recursive algorithm for every frame. To improve the recog-
nition accuracy, the LPC coefficients are transformed into 18
LPCC coefficients �c1 c2 . . .cP . . .cL� �L=18� using the fol-
lowing equations:

c1 = a1, �3�

cn = an + �
k=1

n−1 �n − k

n
· ak · c�n−k��, 2 � n � P , �4�

cn = �
k=1

P �n − k

n
· ak · c�n−k��, P + 1 � n � L . �5�

Note that the first order LPCC coefficient represents the
spectral energy, which is generally not normalized between
input signals, so c1 is not used for the distance computation
described next.

After generating the feature vectors for the templates
and input bird syllables, the comparison is made by nonuni-
formly adjusting the time axis of the input syllable to achieve
the best match to the template. In the matching process for
an input bird syllable with M frames and a template with N
frames, the time frames of the input bird syllable and the
time frames of the templates are organized in a lattice �i , j�,
where i and j are the indexes of the time frames of the input
syllable and the template, respectively. The quality of the
match is measured recursively by the formula

D�i, j� = min�D�i − 1, j − 1�,D�i − 1, j�,D�i, j − 1��

+ d�i, j� , �6�

where d�i , j� is the Euclidean distance between the two mul-
tidimensional vectors of the input signal at time frame i and
the template at time frame j, and therefore D�i , j� is the
global distance up to �i , j�. Given the initial condition
D�1,1�=d�1,1�, we have the basis for an efficient recursive
algorithm for computing D�i , j�. The final global distance
D�M ,N� gives us the overall matching score of the template
with the input. The input syllable is then classified as the
species corresponding to the template with the lowest match-
ing score.

2. Description of the classification system based
on MFCC and HMM

The Hidden Markov Model is a doubly stochastic pro-
cess with an underlying “hidden” stochastic process that is
not observable, but can only be observed through another set
of stochastic processes that produce the sequence of ob-
served symbols �Rabiner, 1989�. The HMM comprises a fi-
nite set of states, each of which is associated with a specific
probability distribution. Transitions among the states are
governed by a set of transition probabilities. In a particular
state an observation can be generated according to the asso-
ciated probability distribution.

The HMM can be used to model the bird sound genera-
tion statistically. It has been used for bird sound recognition
due to its ability to characterize bird sounds in a mathemati-
cally tractable manner �Kogan and Margoliash, 1998�. In
contrast to the deterministic template matching of DTW,
HMM uses a statistical representation. Therefore, this model
can accumulate more information and possibly generalize
better than techniques based on fixed templates.

The HMM procedure implemented for this study in-
cludes the same preprocessing as for the DTW procedure:
16-bit samples, 16 kHz sample rate, and 100 Hz high pass
filtering, and the energy-based onset/offset detection de-
scribed in Sec. IV. The reference templates are selected
manually and include three sound files from each Category
as the training cadre. Each preprocessed signal is segmented
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into Hamming windowed 256-sample �16 ms� frames with
128-sample overlap �8 ms frame hop�. The frames between
the onset and offset are transformed into 13-dimensional
mel-frequency cepstral coefficient feature vectors using
26 mel filterbanks, on a frame-by-frame basis. The MFCC
coefficients are a compact representation, which is the result
of a cosine transform of the real logarithm of the short-term
energy spectrum expressed on a mel-frequency scale �Zheng
et al., 2001�. As with the first order LPCC coefficient in the
DTW method, the first order MFCC coefficient is not con-
sidered in the distance computation.

A continuous HMM representation was used in the tra-
ditional HMM-based classification system employed for this
study. The HMM was a left-to-right model with six states.
The densities of the observation probabilities in the emitting
states were modeled as mixtures of two multidimensional
Gaussian distributions with diagonal covariance matrices.
The Baum-Welch algorithm was used in the training step
employing the three manually selected bird syllables. One set
of HMM parameters were generated for every bird species.
The trained HMM parameters were then used for recognition
using the Viterbi algorithm �Viterbi, 1967�.

3. Simulation tests using the conventional classifiers

The sensitivity of the classification algorithms to noise
was evaluated with an additional group of simulations. For
each simulation the 560 example files �including the Tem-
plate files� were deliberately contaminated with separate seg-
ments of uniformly distributed �white� noise to achieve a
specified signal-to-noise ratio �SNR�. The simulations in-
cluded SNRs from 30 to 3 dB in steps of 3 or 6 dB.

A more likely practical situation would occur when us-
ing a set of “clean” Templates but testing with noisy Cat-
egory recordings, i.e., field recordings that would ordinarily
be obtained under less than ideal conditions. Thus, a separate
simulation was used to examine this condition.

The DTW performance on the bird sound database is
shown in Table III. The results indicate a likelihood of error
for DTW with the original recorded signals of approximately
1/10 �i.e., 90% correct matches�, with performance degrad-
ing to 71% correct classification under low signal-to-noise
conditions.

The performance on the sound database for the conven-
tional HMM system is shown in Table IV. The results show
a likelihood of error for HMM of approximately 1/20 �95%
correct matches� under high signal-to-noise conditions, de-
grading to 76% correct with noisy data.

Although the conventional procedures are moderately
successful on the sound database used in this study and cor-
respond well to prior results reported in the literature, the
performance degradation with decreasing SNR is a serious
shortcoming for a practical, robust system.

C. Classification by the spectral peak track method

The spectral peak track method requires a reference tem-
plate for each bird species in the database. One representa-
tive syllable from each of the 28 Categories was selected
manually, designated Template 0 through Template 27, and
used as the training cadre.

The first test of the peak track procedures described in
Sec. IV was to distinguish between single part and two-part
syllables. The simple energy based detection algorithm per-
forms well with the bird sounds in the database: all 560
example sounds were correctly classified. However, only 40
examples �Category 11 and Category 27� contained two-part
syllables, so additional verification will be needed before as-
suming the simple algorithm is sufficient.

In the classification experiment, each of the 560 syllable
recordings was processed using the peak track method de-
scribed above. Here 238 out of 240 natural bird sounds were
correctly classified �error rate 2/240�, while the error rate was
5/560 �99% correct matches� for the entire natural and syn-
thetic database at a high SNR. These results indicate that the
peak track method was well suited to this particular database.

The five misclassified examples were examined. The
first misclassification was a Category 3 example mistaken for
Category 0. The particular example contained a frequency
change from 3000 to 2500 Hz, while the Template 3 refer-
ence had a 3000 to 2000 Hz change. The resulting distance
was closer to Template 0, causing the mismatch.

The second error was due to an example from Category
0 being mistaken for Category 1. In this case there are two
peak tracks in Template 0, while the processed input example
was found to have three significant peak tracks. The differing

TABLE III. Performance of a classification system based on linear predic-
tion cepstral coefficients �LPCC� and dynamic time warping �DTW� meth-
ods �23/240 means that the error count was 23 out of 240�.

12 natural sounds 28 total sounds

(SNR)
(dB)

Noisy
training set

Clean
training set

Noisy
training set

Clean
training set

Original 23/240 23/240 33/560 33/560
30 23/240 24/240 33/560 36/560
24 27/240 28/240 38/560 40/560
18 30/240 34/240 43/560 48/560
12 38/240 40/240 54/560 57/560
9 50/240 61/240 68/560 82/560
6 59/240 90/240 81/560 116/560
3 68/240 115/240 93/560 148/560

TABLE IV. Performance of a classification system based on the mel-
frequency cepstral coefficients �MFCC� and hidden Markov models �HMM�
�12/240 means that the error count was 12 out of 240�.

12 natural sounds 28 total sounds

SNR
(dB)

Noisy
training set

Clean
training set

Noisy
training set

Clean
training set

Original 12/240 12/240 20/560 20/560
30 12/240 12/240 20/560 21/560
24 15/240 16/240 23/560 25/560
18 17/240 19/240 27/560 30/560
12 23/240 28/240 33/560 39/560
9 34/240 51/240 45/560 65/560
6 45/240 83/240 62/560 99/560
3 58/240 126/240 87/560 158/560
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number of peak tracks caused this example to have a greater
distance from Template 0 than from Template 1 that has three
peak tracks, therefore causing the misclassification.

The other errors were because of examples from Cat-
egory 11 being mistaken for Category 27. The Category 11
examples are a natural bird sounds, while Category 27 con-
tains synthesized examples with relatively strong peak track
powers that were included specifically as distracters �suc-
cessful in triggering a misclassification in this case�. The
Template 11 data contains two peak tracks, while the pro-
cessed input examples were found to have four significant
peak tracks. The differing number of peak tracks caused
these examples to have a greater distance from Template 11
than from Template 27, thereby causing the misclassifica-
tions.

The classification performance degraded as the SNR de-
creased from 30 to 24 dB. When the SNR decreased from 24
to 12 dB, the classification accuracy unexpectedly improved,
despite the degraded signal quality. An examination of the
Category 11 signal revealed that the additive noise slightly
altered the relative power of the peak tracks, causing the
distance between the Category 11 signal and Template 11 to
be less than the distance between Category 11 and Template
27. A similar subtle change occurred between a Category 3
signal and Template 0, causing a correct classification. De-
creasing the SNR to 9, 6, and 3 dB degraded the classifica-
tion accuracy, although the overall performance was still
good �95% correct at 3 dB SNR�, as shown in Table V.

When using “clean” Templates but testing with noisy
Category recordings, the classification accuracy was unaf-
fected until the SNR decreased to 6 and 3 dB. The perfor-
mance differed between the noisy and clean Template cases,
but not in a significant manner. Thus, based on this simulated
noise test the peak track method does not appear to be par-
ticularly sensitive to the SNR difference between the Tem-
plate and the test samples.

D. Discussion

As indicated by the results in Tables III, IV, and V, the
spectral peak track method provided better overall results
than the conventional DTW and HMM methods, particularly
in the low signal-to-noise ratio tests. There are two expected
reasons for this result. First, the conventional methods based

on a linear prediction model have difficulty with the sparse
spectrum of the bird syllables in the test database: insuffi-
cient information is present in each syllable recording to cre-
ate a unique and easily distinguishable LPC model. The fre-
quency spacing of the spectral components is relatively wide
compared to the underlying resonances of the bird vocal
tract, indicating that the linear prediction methods are mis-
matched to the signals in the database. Second, the conven-
tional model parameters are quite sensitive to existing back-
ground noise, reverberation, and competing sounds in the
recordings. The results in Tables III and IV for the 12 natural
sounds and for the 28 total sounds show that the conven-
tional systems operated better on the artificial distracter sig-
nals than on the natural sounds with inherent background
noise. For these reasons it is useful to consider alternative
pattern classification techniques, such as the spectral peak
track method presented in this paper.

VI. CONCLUSION

The spectral peak track method described in this paper
appears to work as designed for isolated bird syllables, and
the simulation results are better in comparison to conven-
tional DTW and HMM methods used to classify the same
database. The proposed method extends the prior peak track
methods by using a variable number of tracks to represent
each syllable by determining the relative power of each de-
tected spectral track. This method accommodates tonal, har-
monic, or inharmonic syllables, and bases the pattern classi-
fication on the strongest tracks present in each syllable. The
set of parameters derived for each significant peak track was
quite robust in the presence of simulated additive noise,
which is an encouraging result for future applications of this
technique in classifying bird vocalizations.

However, the proposed method is inappropriate for use
with bird vocalizations containing aperiodic or noise-like
components because the assumption of connected peak
tracks is violated in these cases. The proposed method is also
inappropriate if the underlying spectral components change
too rapidly in frequency or fluctuate in amplitude such that
the peak tracks cannot be determined reliably. Research is
continuing on methods to classify such rapidly varying sig-
nals, and also to identify broadband and noisy sounds.

In the current system we manually extract one syllable
from the recorded bird sounds and save the data in a separate
sound file. However, in an on-line real time production ap-
plication it will be necessary to demonstrate an automatic
syllable extraction method. Thus, there remain a variety of
engineering challenges to deploying this system for real-time
classification.
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